CHEMICAL BONDING AND MOLECULAR STRUCTURE

1.	The hybrid state of S in SO	$ m O_3$ is similar to that of		
	a) C in C ₂ H ₂	b) C in C ₂ H ₄	c) C in CH ₄	d) C in CO ₂
2.	The hydration energy of M	Mg ²⁺ is larger than that of:		
	a) Al ³⁺	b) Na ⁺	c) Be ²⁺	d) None of these
3.	Number of lone pair (s) in	n XeOF₄ is/are		
	a) 0	b) 1	c) 2	d) 3
4.	A STATE OF THE STA	ween molecules depend up	0.00	50 € 33
	a) Number of electrons	b) Charge on nucleus	c) Radius of atoms	d) All of these
5.	XeF ₆ is:	, ,		
	a) Octahedral			
	b) Pentagonal pyramidal			
	c) Planar			
	d) tetrahedral			
6.	-	2.5 while that in NO ⁺ is 3. V	Which of the following state	ements is true for these two
	species?		3	
	a) Bond length in NO+ is	greater than in NO		
	b) Bond length in NO is gr	# (B. G.) : [[[[]] [] [] [] [] [] [] [
	c) Bond length in NO ⁺ is			
	d) Bond length is unpredi			
7.	•		mbine chemically with the	atom whose atomic number
	is:	•		
	a) 11	b) 16	c) 18	d) 10
8.	Which has the largest dist	ance between the carbon h	ydrogen atom?	003 7 -102000-0
	a) Ethane	b) Ethene	c) Ethyne	d) Benzene
9.	Length of hydrogen bond	ranges from 2.5Å to:		
	a) 3.0 Å	b) 2.75 Å	c) 2.6 Å	d) 3.2 Å
10.	If $H - X$ bond length is 2.0	00 Å and H - X bond has di	pole moment 5.12×10^{-30}	C – m,
		aracter in the molecule wil		
	a) 10%	b) 16%	c) 18%	d) 20%
11.	Which molecule is planar	?		
	a) NH ₃	b) CH ₄	c) C ₂ H ₄	d) SiCl ₄
12.	From the molecular orbit	al theory, one can show tha	t the bond order in F2 mol	ecule as
	a) 2	b) 1	c) 3	d) 4
13.	Two ice cubes are pressed	d over each other until they	unite to form one block. W	which one of the following
	forces dominates for hold	ing them together?		
	a) Dipole-dipole interacti	on	b) Van der Waals' forces	
	c) Hydrogen bond format	ion	d) Covalent attraction	
14.		alent bonds between two li	ke atoms can be:	
	a) Three	b) Two	c) Four	d) One
15.	When sodium and chlorin	ie react, energy is:		

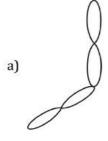
	a) Released and ionic bond is formed				
	b) Released and covalent bond is formed				
	c) Absorbed and covalent bond is formed				
	d) Absorbed and ionic bond is formed				
16.	The maximum possible number of hydrogen bor	nds is a H ₂ O molecule can par	ticipate is		
	a) 1 b) 2	c) 3	d) 4		
17.	The element having lowest ionisation energy am	ong the following is:			
	a) $1s^2$, $2s^22p^3$ b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$		
18.	Bond energies in NO, NO ⁺ and NO ⁻ are such as				
	a) $NO^- > NO > NO^+$ b) $NO > NO^- > NO^+$	c) $NO^{+} > NO > NO^{-}$	d) $NO^{+} > NO^{-} > NO$		
19.	Two type FXF angles are present in which of the	following molecules? (X=S, X	e, C)		
	a) SF ₄ b) XeF ₄	c) SF ₆	d) CF ₄		
20.	The bond angle between two hybrid orbitals is 1	.05°. The percentage of s-char	acter of hybrid orbital is		
	between	an transfer our Carrow Protection - I n Court to the Carrow to 1875 t he Carrow court of the committee to the	edit talan suda setek it dalah ketebah suda terhitik sada berbah dalah dalah sebagai ketebah sebagai ketebah s		
	a) 50 – 55% b) 9 – 12%	c) $22 - 23\%$	d) 11 – 12%		
21.	Which is electron deficient compound?				
	a) C ₂ H ₄ b) B ₂ H ₆	c) C ₂ H ₆	d) NaBH ₄		
22.	CCl ₄ is insoluble in water because:		50 C S S S S S S S S S S S S S S S S S S		
	a) CCl ₄ is non-polar and water is polar				
	b) Water is non-polar and CCl ₄ is polar				
	c) Water and CCl ₄ both are polar				
	d) None of the above				
23.	Which of the following is not correct regarding t	he properties of ionic compou	inds?		
	a) Ionic compounds have high metling and boiling	ng points			
	b) Their reaction velocity in aqueous medium is	very high			
	c) Ionic compounds in their molten and aqueous	s solutions do not conduct ele	ctricity		
	d) They are highly soluble in polar solvents				
24.	The number of sigma and pi (π) bonds present i	n benzene respectively are			
	a) 12, 6 b) 6, 6	c) 6, 12	d) 12, 3		
25.	Which of the following is not tetrahedral?				
	a) BF ₄ b) NH ₄ ⁺	c) CO ₃ ²⁻	d) SO ₄ ²⁻		
26.	In PCl ₅ molecule, P is:				
	a) sp^3 -hybridized b) dsp^2 -hybridized	c) ds^3p -hybridized	d) sp^3d -hybridized		
27.	The bond angle and % of d-character in SF ₆ are				
	a) 120°, 20% b) 90°, 33%	c) 109°, 25%	d) 90°, 25%		
28.	Linear combination of two hybridized orbitals, b	elonging to two atoms and ea	ch having one electron leads		
	to:				
	a) Sigma-bond				
	b) Double bond				
	c) Coordinate covalent bond				
	d) Pi-bond				
29.	In allene structure, three carbon atoms are joine	d by:			
	a) Three σ -and three π -bonds				
	b) Two σ- and one π-bond				
	c) Two σ-and two π-bonds				
	d) Three π -bonds only				
30.	Geometry of SiO ₄ ⁴⁻ anion is				
	a) Tetrahedral b) Trigonal	c) Trihedral	d) Pentagonal		
31.	The carbon atom in graphite is:				
	a) sp^2 -hybridized b) sp^3 -hybridized	c) sp-hybridized	d) None of these		

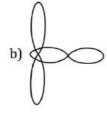
32		h one of the following anion		(n nn-
0232	a) BF ₆ ³⁻	b) BH ₄	c) B(OH) ₄	d) BO ₂
33	 If the ionic radii of K⁺ an should be respectively: 	id F ⁻ are about 1.34 Å each,	, then the expected values o	of atomic radii of K and F
	a) 1.34 and 1.34 Å	b) 2.31 and 0.64 Å	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å
34	. If Z-axis is the molecular	axis, then π -molecular orb	itals are formed by the over	rlap of
	a) $s + p_z$	b) $p_x + p_y$	c) $p_z + p_z$	d) $p_x + p_x$
35	. Which one is the weakes	t bond?		
	a) Hydrogen	b) Ionic	c) Covalent	d) Metallic
36	. The total number of vale	ncy electrons for PO ₄ ³⁻ ion i	is:	15
	a) 32	b) 16	c) 28	d) 30
37	. The ratio of σ and π -bon	ds in benzene is:		, 104 5 (1307990
	a) 2	b) 6	c) 4	d) 8
38	. The geometry of PF ₅ mo	lecule is:	8	8
	a) Planar	b) Square planar	c) Trigonal bipyramidal	d) Tetrahedral
39	. Which one of the followi	ng linear structure?		
	$(I)I_3^ (II)NO_2^-$			
	$(III)I_3^+$ $(IV)SO_2$			
	$(V)N_3^-$			
	a) I, II and III	b) I and V	c) II, III and IV	d) All of these
40	. According to MO theory,	which of the following lists	ranks the nitrogen species	in terms of increasing bond
	order?			
	a) $N_2^- < N_2^{2-} < N_2$	b) $N_2^- < N_2 < N_2^{2-}$	c) $N_2^{2-} < N_2^- < N_2$	d) $N_2 < N_2^{2-} < N_2^{-}$
41	. The equilateral triangle s	shape has:		
	a) sp-hybridization	b) sp^2 -hybridization	c) sp ³ -hybridization	d) sp^3d -hybridization
42	. Which of the following h	as fractional bond order?		
	a) 0_2^{2+}	b) O ₂ ²⁻	c) F ₂ ²⁻	d) H ₂ ⁻
43	. For which of the following	ng hybridization the bond a	ngle is maximum?	
	a) sp^2	b) <i>sp</i>	c) sp^3	d) dsp^2
44	. Experiment shows that I	H ₂ O has a dipole moment w	hereas, CO ₂ has not. Point o	out the structures which
	best illustrate these facts	S:		
		Ç	O	ОН
	a) $O = C = O, H - O - H$	b) C, H-O-H	c) $O=C=O$, $/$	d) Ĭ Ī
		0 0	Н Н	C=O,O-H
45	. In TeCl ₄ , the central aton	n tellurium involves	11	
10	a) sp ³ hybridisation		c) $sp^3 d^2$ hybridisation	d) dsn^2 hybridisation
46		10 Table 1 (F) 1 Table	cysp a hybridisación	a) asp hybridisation
	a) Increase in bond angle			
	b) Decrease in bond angl			
	c) Decrease in resonance			
	d) None of these			
47	. Which of the following is	isoelectronic with CO ₂ ?		
	a) NO ₂	b) NO	c) N ₂ O	d) N ₂ O ₄
48		as a molecule with residual		u) 1.204
	a) N ₂	b) CH ₄	c) NaCl	d) BeCl ₂
49		c compound depends upon	., ., ., .,	a) 23 a.2
	a) Charge on the ion and		b) Packing of ions only	
	c) Size of the ion only		d) Charge on the ion only	
50		ment from below, concerni		
	o - viiintoneene viii. ♥ 1974-1971 ookkolii 17.481566 ili 1976.	ra suro de sua como como color naterior en 125, 126,000,000 de 2000 de 2000 de 2000 de 2000 de 2000 de 2000 de	ou rs utationes un facilitation (1997 - 1991). 🖶	x 2470.0 .11

a) The molecule is planar

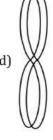
- b) One of the three carbon atoms is in ansphase sp^3 hybridised state
- c) The molecule is non planar with the two CH_2d) All the carbon atoms are sp-hybridized groups being in planes perpendicular to each other
- 51. (i) H − C − H angle in CH₄
 - (ii) Cl − B − Cl angle in BCl₃
 - (iii) F I F angle in IF_7 in a plane
 - (iv) I I I angle in I_3^-

Increasing order of above bond angles is


a) (i) < (ii) < (iii) < (iv)


b) (ii) < (i) < (iii) < (iv)


c) (iii) < (i) < (ii) < (iv)


- d) (iv) < (ii) < (i) < (iii)
- 52. Among the following elements, the most electronegative is:
 - a) Oxygen
- b) Chlorine
- c) Nitrogen
- d) Fluorine

- 53. Metallic bonds do not play a role in:
 - a) Brass
- b) Copper
- c) Germanium
- d) Zinc
- 54. Which *p*-orbitals overlapping would give the strongest bond?

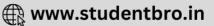
- 55. H₂O boils at higher temperature than H₂S because it is capable of forming:
 - a) Ionic bonds
- b) Covalent bonds
- c) Hydrogen bonds
- d) Metallic bonds

- 56. When two atomic orbitals combine, they form:
 - a) One molecular orbitals
 - b) Two molecular orbitals
 - c) Two bonding molecular orbitals
 - d) Two antibonding molecular orbitals
- 57. The correct increasing covalent nature is:
 - a) NaCl < LiCl < BeCl₂ b) BeCl₂ < NaCl < LiCl c) BeCl₂ < LiCl < NaCl
- d) LiCl < NaCl < BeCl₂
- 58. IP₁ and IP₂ of Mg are 178 and 348 kcal mol⁻¹. The energy required for the reaction,
 - $Mg \rightarrow Mg^{2+} + 2e^{-}$ is:
 - a) +170 kcal
- b) +526 kcal
- c) -170 kcal
- d) -526 kcal

59. The electronic configuration

$$(\sigma ls)^2 (\overset{*}{\sigma} ls)^2 (\sigma 2s)^2 (\overset{*}{\sigma} 2s)^2 (\sigma 2p_x)^2$$

$$(\pi 2p_y)^2 (\pi 2p_z)^2 (\pi^2 2p_y)^2 (\pi^2 2p_z)^1$$


can be assigned to

a) 0_2

b) 02

- 60. Some of the properties of the two species, NO₃ and H₃O⁺ are described below. Which one of them is
 - a) Dissimilar in hybridization for the central atom with different structure
 - b) Isostructural with same hybridization for the central atom
 - c) Isostructural with different hybridization for the central atom
 - d) Similar is hybridization for the central atom with different structure
- 61. 6, 6

	200	1116		11/2/2
220	a) 6, 6	b) 6, 6	c) 6, 6	d) 6, 6
62.	Greater the dipole momen			
	a) Greater is the ionic nat	ure		
	b) Lesser the polarity			
	c) Smaller the ionic natur	e		
	d) None of these			
63.	H-B-H bond angle in BH	_ is:		
	a) 180°	b) 120°	c) 109°	d) 90°
64.				
	a) $\sigma 2p_x$	b) $\pi 2p_{y}$	c) $\pi^* 2p_y$	d) $\sigma^* 2p_x$
65.	The common feature amo	ng the species CN ⁻ , CO and	NO ⁺ are:	
				d) Isoelectronic and weak
	isoelectronic	weak field ligands	acceptors	field ligands
66.	Hydrogen bonding is max			
	a) C ₂ H ₅ OH	b) CH ₃ OCH ₃	c) $(CH_3)_2C = 0$	d) CH ₃ CHO
67	The O—H bond distance i	- 1570 150 150 150 150 150 150 150 150 150 15	0) (0113)20	.,,
07.	a) 1.0Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å
68	0_2^{2+} has a bond order of	b) 1.55 N	c) 0.50 N	u) 1.13 N
00.	a) 1	b) 2	c) 3	d) 4
60		ng molecules/ ions is diama		u) 4
09.	(47)	ig indiecules/ ions is diama	ignetic:	
	a) Super oxide ion			
	b) Oxygen			
	c) Carbon molecule	1 1		
	d) Unipositive ion of N ₂ m			
70.	The enolic form of aceton			
	a) 9 sigma bonds, 1 pi bor	E.		
	b) 8 sigma bonds, 2 pi bor	TENNESSEE ENGINEERING (1985) 10 (1987) 10 (1987) 10 (1987)		
	c) 10 sigma bonds, 1 pi bo			
	d) 9 sigma bonds, 2 pi bor			
71.		e isoelectronic and isostruc	tural?	
	$NO_3^-, CO_3^{2-}, ClO_3^-, ClO_3^-$	**		
	a) NO_3^-, CO_3^{2-}	b) SO_3 , NO_3^-	c) ClO_3^-, CO_3^{2-}	d) CO_3^{2-} , SO_3
72.	Which of the following is j	paramagnetic with bond or	der 0.5?	
	a) F ₂	b) H ₂ ⁺	c) N ₂	d) O ₂
73.	Water has high heat of va	porization due to:		
	a) Covalent bonding	b) H-bonding	c) Ionic bonding	d) None of these
74.	The C - H bond distance is	s the longest in		
	a) C ₂ H ₆	b) C ₂ H ₂	c) C ₂ H ₂ Br ₂	d) C ₂ H ₄
75.	If the electronegativity dif	fference between two atom	s A and B is 2.0, then the p	ercentage of covalent
	character in the molecule	is	3	-
	a) 54%	b) 46%	c) 23%	d) 72%
76.	Structure of ICl ₂ is:	.3	if	E.
	a) Trigonal			
	b) Octahedral			
	c) Square planar			
	d) Distorted trigonal pyra	midal		
77. Polar covalent compounds are soluble in:				
F F	a) Polar solvents	b) Non-polar solvents	c) Concentrated acids	d) All solvents
78		나 아이들에서 하면 맛이 가지 않는데 하면 하면 하면 하는데	owing is the structure of N ₂	- 30.3 20.0 mm - market constrained
70.	1120 is isociced onle to co	Z and 113. Which of the follo	owing is the structure of W2	

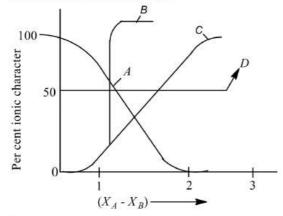
	a) b) N – 0 – N	c) $N - O - N$	d) N		
	a) N N	c) N O N	N O		
79.	Which does not show hydrogen bonding?				
	a) C ₂ H ₅ OH b) Liquid NH ₃	c) H ₂ O	d) Liquid HBr		
80.	All bond angles are exactly equal to 109° 28` in				
	a) Methyl chloride	b) Iodoform			
	c) Chloroform	d) Carbon tetrachloride	9		
81.	Which among the following has highest ionic rad	ius?			
	a) F ⁻ b) B ³⁺	c) O ²⁻	d) Li ⁺		
82.	Zero dipole moment is possessed by				
	a) PCl ₃ b) BF ₃	c) ClF ₃	d) NH ₃		
83.	The number of electrons involved in the bond for	rmation of N ₂ molecule			
	a) 2 b) 4	c) 6	d) 10		
84.	Which one of the following orders is not in accor	ding with the property state	d against it?		
	a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity				
	b) $F_2 > CI_2 > Br_2 > I_2$: Bond dissociation ene	rgy			
	c) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power				
	d) HI > HBr > HCl > HF : Acidic property in wat	er.			
85.	What is the dominant intermolecular force or bo	nd that must be overcome in	converting liquid CH ₃ OH to a		
	gas?				
	a) London dispersion force				
	b) Hydrogen bonding				
	c) Dipole-dipole interaction				
	d) Covalent bonds				
86.	The incorrect statements regarding bonding mol				
	a) Bonding molecular orbitals possess less energ				
	b) Bonding molecular orbitals have low electron				
	c) Every electron in bonding molecular orbitals of				
	d) They are formed when the lobes of the combin		ne sign.		
87.	A coordinate bond is a dative covalent bond. Whi		2000 Carlo St. 480 E5 94 35		
	a) Three atom form bond by sharing their electrons b) Two atoms form bond by sharing their electrons				
	하는 사용한 전 및 100mm 이 100mm	사용하다 그는 그 사용에 있는 것이 없는데 아내는 아내는 아내는 아내는 아내는 것이 없었다.	and the control of th		
	c) Two atoms form bond and one of them prov	videsd) Two atoms form	bond by sharing electrons		
	c) Two atoms form bond and one of them prov both electrons	videsd) Two atoms form obtained from third	bond by sharing electrons		
88.	c) Two atoms form bond and one of them provided both electrons The bond length between C – C bond in sp^2 hybridians.	videsd) Two atoms form obtained from third idised molecule is	bond by sharing electrons atom.		
	 c) Two atoms form bond and one of them provided both electrons The bond length between C – C bond in sp² hybrid a) 1.2 Å b) 1.39 Å 	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å	bond by sharing electrons atom.		
	 c) Two atoms form bond and one of them provided both electrons The bond length between C – C bond in sp² hybra a) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are 	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å	bond by sharing electrons atom.		
	 c) Two atoms form bond and one of them provided both electrons The bond length between C – C bond in sp² hybra a) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? 	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the		
89.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroa) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å	bond by sharing electrons atom.		
89.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroa) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size?	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H		
89. 90.	c) Two atoms form bond and one of them provided both electrons The bond length between C – C bond in sp^2 hybrid a) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al ⁺	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺		
89. 90.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroa) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al ⁺ In which of the following, the bond length between the source of the provided in the provid	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺		
89. 90.	c) Two atoms form bond and one of them provided both electrons The bond length between C – C bond in sp^2 hybrid a) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al ⁺ In which of the following, the bond length between the polar bond length	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺ ween hybridised carbon at	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺ om and other carbon atom is		
89.90.91.	c) Two atoms form bond and one of them provided both electrons The bond length between C – C bond in sp^2 hybrid a) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al ⁺ In which of the following, the bond length between the provided by the property of the p	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺		
89.90.91.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroal 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al ⁺ In which of the following, the bond length between the bond length lengt	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺ ween hybridised carbon atom	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺ om and other carbon atom is d) Propane		
89.90.91.92.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybrida) 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al ⁺ In which of the following, the bond length between the bound length lengt	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺ ween hybridised carbon at c) Butane c) Molten KCl	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺ om and other carbon atom is		
89.90.91.92.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroal 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al+ In which of the following, the bond length between the bound length between the bo	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺ ween hybridised carbon at c) Butane c) Molten KCl e they contain	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺ om and other carbon atom is d) Propane d) Crystalline NaCl		
89.90.91.92.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroal 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al+ In which of the following, the bond length between the bond length length bet	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺ ween hybridised carbon ato c) Butane c) Molten KCl re they contain b) A network structure	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺ om and other carbon atom is d) Propane d) Crystalline NaCl		
89.90.91.92.93.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroal 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al+ In which of the following, the bond length between the following bonds is most polar? a) Propyne b) Propene Which is expected to conduct electricity? a) Diamond b) Molten sulphur Metals are good conductors of electricity because a) Ionic bonds c) Very few valence electrons	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺ ween hybridised carbon at c) Butane c) Molten KCl e they contain	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺ om and other carbon atom is d) Propane d) Crystalline NaCl		
89.90.91.92.93.	c) Two atoms form bond and one of them provous both electrons The bond length between C – C bond in sp^2 hybroal 1.2 Å b) 1.39 Å The electronegativity values of C, H, O, N and S are following bonds is most polar? a) C—H b) N—H Which of the following has largest size? a) Al b) Al+ In which of the following, the bond length between the bond length length bet	videsd) Two atoms form obtained from third idised molecule is c) 1.33 Å re 2.5, 2.1, 3.5, 3.0 and 2.5 re c) S—H c) Al ²⁺ ween hybridised carbon ato c) Butane c) Molten KCl re they contain b) A network structure	bond by sharing electrons atom. d) 1.54 Å spectively. Which of the d) 0—H d) Al ³⁺ om and other carbon atom is d) Propane d) Crystalline NaCl		

0.00	
a)	SO
٠,	

b) BrF₃

d) OSF₂

- 95. The attraction that non-polar molecules have for each other is primarily caused by:
 - a) Hydrogen bonding
 - b) Difference in electronegativities
 - c) High ionisation energy
 - d) Van der Waals' forces
- 96. In HCHO carbon atom has hybridisation:


b)
$$sp^2$$

c)
$$sp^3$$

d) None of these

97. Which of the following species has four lone pairs of electrons in its outer shell?

98. For AB bond if per cent ionic character is plotted against electronegativity difference $(X_A - X_B)$, the shape of the curve would look like

The correct curve is

- 99. Chlorine atom, in its third excited state, reacts with fluorine to form a compound X. The formula and shape of Xare
 - a) ClF₅, pentagonal
 - b) ClF₄, tetrahedral
 - c) ClF₄, pentagonal bipyramidal
 - d) ClF₇, pentagonal bipyramidal
- 100. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below,

$$O(g) + e \rightarrow O^{-}(g)$$
;

$$\Delta H = -142 \text{ kJ/mol}$$

$$0^{-}(g) + e \rightarrow 0^{2-}(g)$$
;

$$\Delta H = 844 \text{ kJ/mol}$$

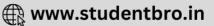
This is because:

- a) O ion has comparatively larger size than oxygen atom
- b) Oxygen has high electron affinity
- c) O ion will lead to resist the addition of another electron
- d) Oxygen is more electronegative
- 101. In which of the following molecules are all the bonds not equal?
- b) NF₃

- c) CIF₃
- d) BF₃

- 102. Which of the following compound is covalent?

b) KCl


- c) Na₂S
- d) CaO
- 103. Which of the following molecular species has unpaired electron (s)?
 - a) N_2

c) 0_{2}^{-}

d) 0_2^{2-}

- 104. The correct order of bond angles is:
 - a) $PF_3 < PCl_3 < PBr_3 < PI_3$
 - b) $PF_3 < PBr_3 < PCl_3 < PI_3$

c) $PI_3 < PBr_3 < PCl_3 < PF_3$					
d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃	malagula and 1 25 A and 1	O D respectively, what is the			
per cent ionic character of the bond?	105. If the bond length and dipole moment of a diatomic molecule are 1.25 A and 1.0 D respectively, what is the				
a) 10.66 b) 12.33	c) 16.66	d) 19.33			
106. The molecule which does not exhibit dipole moment		u) 19.33			
a) NH ₃ b) CHCl ₃	c) H ₂ O	d) CCl ₄			
107. N_2 accept electron and convert into N_2 , where this e	(4) (70)	4) 6614			
a) Antibonding π-molecular orbital	icciron goes.				
b) Bonding π-molecular orbital					
c) σ-bonding molecular orbital					
d) σ-antibonding molecular orbital					
108. The correct order of radii is:					
a) $N < Be < B$ b) $F^- < 0^{2-} < N^{3-}$	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$			
109. The bond order is maximum in:	37.4.J. 53.4.7. St. 57.5.7.	37 (A.A.) 3.49A 3.43A			
a) H ₂ b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺			
110. Which of the following atoms has minimum covalen	3 (7)	, 2			
a) Si b) N	c) C	d) B			
111. The screening effect of <i>d</i> -electrons is:					
a) Equal to the p -electrons					
b) Much more than <i>p</i> -electrons					
c) Same as f-electrons					
d) Less than p-electrons					
112. Which of the following statement is wrong?					
a) The stability of hydrides increase from NH3 to Bil	$ m H_3$ in group 15 of the perio	dic table.			
b) Nitrogen cannot form $d\pi - p\pi$ bond.					
c) Single N—N bond is weaker than the single P—P	bond.				
d) N ₂ O ₄ has two resonance structure					
113. The molecule having permanent dipole moment is:					
a) SF ₄ b) XeF ₄	c) SiF ₄	d) BF ₃			
114. Unusually high boiling point of water is result of					
a) Intermolecular hydrogen bonding	b) Intramolecular hydrog	gen bonding			
c) Both intra and inter molecular hydrogen bonding	d) High specific heat				
115. Which of the following is least ionic?					
a) CaF ₂ b) CaBr ₂	c) CaI ₂	d) CaCl ₂			
116. What bond order does O_2^{2-} have?					
a) 1 b) 2	c) 3	d) 1/3			
117. A compound contains X , Y and Z atoms. The oxidation	ion states of <i>X, Y</i> and <i>Z</i> are	+2, +2 and -2 respectively.			
The possible formula of the compound is					
a) XYZ_2 b) $Y_2(XZ_3)_2$	c) $X_3(Y_4Z)_2$	d) $X_3(YZ_4)_3$			
118. Which one of the following is a non-polar molecule?					
a) CCl ₄ b) CHCl ₃	c) CH ₂ Cl ₂	d) CH ₃ Cl			
119. Which one of the following has the regular tetrahed	ral structure?				
(Atomic numbers $B = 5$, $S = 16$, $Ni = 28$, $Xe = 54$)					
a) XeF ₄ b) SF ₄	c) BF ₄	d) [Ni(CN) ₃] ²⁻			
120. If the dipole moment of toluene and nitro-benzene	are 0.43 D and 3.93 D, ther	what is the expected dipole			
moment of <i>p</i> -nitro toluene?	1 1 2 2 2	700 L 272 W			
a) 3.50 D b) 2.18 D	c) 4.36 D	d) 5.30 D			
121. Which of the following is most stable?	3 0:24	D a 2±			
a) Pb ²⁺ b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺			

122. In which of the following compound sp^2 hybridisation is absent?

a) $CH_2 = CH - CH = CH_2$

b) $CH \equiv C - CH_2 - CH_3$

c) $CH_2 - CH = CH_2$

d) $CH_2 = CH - CH_2 - CH_3$

123. Which one of the following pairs of species has the same bond order:

- a) NO+ and CN+
- b) CN- and NO+
- c) CN- and CN+
- d) O₂ and CN-

124. Which of the following characteristics regarding halogens is not correct?

- a) Ionization energy decreases with increase in atomic number.
- b) Electronegativity decreases with increase in atomic number.
- c) Electron affinity decreases with increase in atomic number.
- d) Enthalpy of fusion increases with increase in atomic number.
- 125. The number of S S bonds in sulphur trioxide is
 - a) Three
- b) Two
- c) One
- d) Zero

126. The low density of ice compared to water is due to

- a) Induced dipole induced dipole interactions
- b) Dipole induced dipole interaction
- c) Hydrogen bonding interactions
- d) Dipole -dipole interaction

127. Consider the following molecules or ions

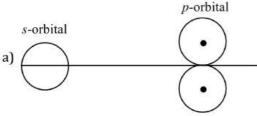
- $(i)H_2O$
- (ii)NH₄+
- (iii)SO₄²⁻

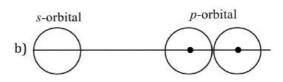
 $(iv)ClO_4^ (v)NH_3$

 sp^3 hybridisation is involved in the formation of

a) (i), (ii) (v) only

b) (i), (ii) only

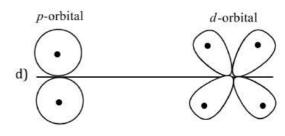

c) (ii) only


d) (i), (ii), (iii), (iv) and (v)

128. Which of the following compounds has dipole moment approximately equal to that of chlorobenzene?

- a) o-dichlorobenzene
- b) m-dichlorobenzene
- c) p-dichlorobenzene
- d) p-chloronitrobenzene

129. Which of the following overlaps leads to bonding?



p-orbital

p-orbital

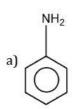
c)

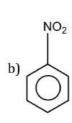
130. Which of the following is correct?

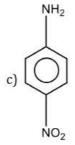
- a) The number of electrons present in the valence shell of S in SF₆ is 12.
- b) The rates of ionic reactions are very low.
- c) According to VSEPR theory, SnCI₂ is a linear molecule.
- d) The correct order of ability to form ionic compounds among Na⁺, Mg²⁺ and Al³⁺ is Al³⁺ > Mg²⁺ > Na⁺.

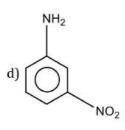
131. The number of sigma and pi bonds in peroxodisulphuric acid are respectively

- a) 9 and 4
- b) 11 and 4
- c) 4 and 8
- d) 4 and 9


132. Which is not a paramagnetic species? b) 0^{+}_{2} c) 0_{2}^{-} d) 0_2^{2-} 133. In piperidine -H, N atom has hybridization: b) sp^2 c) sp^3 d) dsp^2 a) sp 134. Electron deficient species are known as: a) Lewis acids b) Hydrophilic c) Nucleophiles d) Lewis bases 135. The molecule having three folds of axis of symmetry is: c) SO2 d) CO_2 a) NH₃ b) PCl₅ 136. The structure of ICl₂ is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal bipyramid 137. Among the following the molecule with the highest dipole moment is a) CH₃Cl b) CH₂Cl₂ c) CHCl₃ d) CCl4 138. Which of the following is not isostructural with SiCl₄? d) SO_4^{2-} a) PO_4^{3-} b) NH₄ c) SCl4 139. A molecule which cannot exist theoretically is: b) OF₂ c) OF₄ d) 0_2F_2 140. An atom X has three valence electrons and atom Y has six valence electrons. The compound formed between them will have the formula a) X_2Y_6 b) XY_2 c) X_2Y_3 d) X_3Y_2 141. Which one is polar molecule among the following? c) CO_2 d) H_2O b) CCl₄ 142. Shape of molecules is decided by: a) Sigma bond b) π-bond c) Both sigma and π -bonds d) Neither sigma nor π -bonds 143. The shape of carbon dioxide is b) Tetrahedral c) Planar d) linear a) Pyramidal 144. The correct ionic radii order is: a) $N^{3-} > 0^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$ b) $N^{3-} > Na^+ > O^{2-} > F^- > Mg^{2+} > Al^{3+}$ c) $Na^+ > O^{2-} > N^{3-} > F^- > Mg^{2+} > Al^{3+}$ d) $0^{2-} > F^- > Na^+ > N^{3-} > Mg^{2+} > Al^{3+}$ 145. Which is not linear? a) CO₂ b) HCN c) C_2H_2 d) H_2O 146. Hybridisation of oxygen in diethyl ether is b) sp^2 c) sp^3 d) sp^3d 147. What is the effect of more electronegative atom on the strength of ionic bond? a) Increases b) Decreases c) Remains the same d) None of these 148. Which of the following two are isostructural? c) CO_3^{2-} , SO_3^{2-} a) XeF₂, IF₂ b) NH₃, BF₃ d) PCl₅, ICl₅ 149. NF₃ is: a) Non-polar compound b) Electrovalent compound c) Having low value of dipole moment than NH3


	d) Having more dipole mo	ment than NH ₃		
150.	Molecular size of ICl and B	r ₂ is nearly same, but boili	ng point of ICl is about 40°	C higher than Br ₂ . This
	might be due to:			
	a) I—Cl bond is stronger t	han Br—Br bond		
	b) Ionisation energy of I <			
	c) ICl is polar where as Br	29/36		
	d) The size of I > size of B	5		
151.	Which molecule is linear?			
		b) NO ₂	c) ClO ₂	d) CO ₂
152.	Which of the following sho			7 2
		b) Diamond	c) NaCl	d) Mn
153.	Which of the following doe			
	a) NH ₃	b) PH ₃	c) BF ₃	d) PCl ₃
154.	Molecular orbital theory w	The state of the s	-) 3	-73
7016716737		b) Mosley	c) Mulliken	d) Werner
155.	NH ₃ has a net dipole mom	15		
200.	a) B is less electronegative	7	a.p	
	b) F is more electronegative			
	c) BF ₃ is pyramidal while			
	d) NH ₃ is pyramidal while			
156.	Proton plays an important	5 5 9 9		
		b) Hydrogen	c) Covalent	d) Coordinate
157.	Which represents a collect			u) 3331 uniar
107.		b) Ca ²⁺ , Cs ⁺ , Br	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N ³⁻ , F ⁻ , Na ⁺
158	An electrovalent compoun		THE COUNTY THE SECTION OF THE SECTIO	u) ., , , , , , , , , , , , , , , , , , ,
100.	a) Presence of ions	a does not exmore space is	omerism ade to.	
	b) High melting point			
	c) Strong electrostatic for	res between constituent io	ns	
	d) Non-directional nature			
159.	In which molecule Sulphur		ed?	
		b) SF ₄		d) None of these
160	In which one of the followi			
100.	as that present in other the	357 77	in has the type of hybridiza	tion which is not the sume
	50000000000000000000000000000000000000	b) I ₃	c) SbCl ₅ ²⁻	d) PCl ₅
161	The radii of F, F ⁻ , O and O ²		c) abdis	u) 1 di5
101.	a) $0^{2-} > F^{-} > F > 0$		c) $0^{2-} > 0 > F^- > F$	$d) 0^{2-} > F^{-} > 0 > F$
162	The correct order of decre			5.71
102.	a) V > Mn > Cr > Ti		c) Ti $>$ V $>$ Cr $>$ Mn	
163	How many σ and π -bonds		401 401 401 11 11 11 11 11 11 11 11 11 11 11 11 1	u) ci > Mii > V > Ti
105.	$Ph - CH = C - C_2H_5$	are present in given comp	ounu.	
	1			
	CH ₃			
	a) 19 σ and 4 π – bonds		b) 22 σ and 4 π – bonds	
	c) 25 σ and 4 π – bonds		d) 26σ and 4π – bonds	
164	C – Cl bond is stronger th	an C - I bond because	uj 200 ana 1 n bonas	
101.	a) C – Cl bond is more ion		b) C – Cl bond is polar cov	valent hond
	c) C – Cl bond is more cov		d) C – Cl bond length is lo	
165	The ICI molecule is:	alone man G 1	a, a ci bolla leligali is lo	bor than o
100	a) Purely covalent			
	b) Purely electrovalent			
	aj i areij electrovalent			


 \bigoplus www.studentbro.in


c) Polar with negative			
d) Polar with negative		977 3 <u>2</u> 1	
	ng silver salts is insoluble in w		122 10 10/00/
a) AgClO ₄	b) Ag ₂ SO ₄	c) AgF	d) AgNO ₃
	ns in the outermost orbit. In fo		
a) It gains electrons	1.5	c) It shares electrons	d) None of these
168. The shape of gaseou	7	4.141. 4	
a) Tetrahedral	b) Linear	c) Angular	d) T-shape
	to acquire the structure of:		13.17
a) He	b) Ne	c) Ar	d) Kr
	ved in $sp^3 d$ – hybridisation is		******
a) $d_{x^2-y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}
171. When O ₂ is converte			
	ic character and bond order in	crease	
b) Bond order decre			
c) Paramagnetic cha			
	racter decreases and the bond	l order increases	
172. Intramolecular hydr		A	D 1 1 1
a) Water	b) <i>o</i> -nitrophenol	c) p-nitrophenol	d) methylamine
	which have odd electrons in t		
a) NO and ClO ₂	b) COI and SO ₂	c) ClO ₂ and CO	d) SO ₂ and O ₃
	theory the repulsion between	그리고 사용하게 되었다면서 있는데 아이지를 모르게 되었다면서 이 없는데 그렇게 다 먹어?	a) of electrons obey the order
a) <i>lp bp lp lp bp b</i>		b) <i>lp bp bp bp lp lp</i>	
c) <i>lp lp lp bp bp l</i>		d) bp bp lp lp lp bp	
	wo identical non-metal atoms	nas a pair of electrons:	
a) Unequally shared			
b) Equally shared be	from one atom to another		
d) None of the above			
	: 5H ₃ is greater than that in		
a) NH ₃	b) H ₂ O	c) BCl ₃	d) None of these
	increasing electropositive cha	3 H	
a) Cu ≈ Fe < Mg	b) Fe < Cu < Mg	c) Fe < Mg < Cu	d) Cu < Fe < Mg
	e in H ₂ O is 104.5° and not 109		u) ou v re v rig
a) High electronegat		20 because of.	
b) Bond pair-bond p			
c) Lone pair-lone pa			
d) Lone pair-bond pa	177		
	tis equal to bond order in:		
a) N ₂ ⁺	b) CN ⁻	c) CO	d) NO ⁺
	for inert gases is likely to be:	c)	4) 110
a) High	b) Small	c) Zero	d) Positive
181. The true statements		0) 2010	a) rosiare
1.PH ₅ and BiCl ₅ do n			
$2.p\pi - d\pi$ bond is pr			
3.Electrons travel at			
4.SeF ₄ and CH ₄ have			
5.I ₃ ⁺ has bent geomet			
a) 1,3	b) 1,2,5	c) 1,3,5	d) 1,2,4
182. 1,3-butadiene has:	1150 -9 01-1457 (550-)	nes#10acfu8flat)	100 M 100 M 100 M
asena de traver en en e n son un traver de la companya del companya del companya de la companya			

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 1	1) 6 - 12 1 - 1
a) 6σ and 2π -bonds b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds
183. The bond between atoms of two elements of ator		d) Matallia
a) Covalent b) Ionic 184. In methane the bond angle is	c) Coordinate	d) Metallic
a) 180° b) 90°	c) 109°	d) 120°
185. One would expect the elemental form of Cs at roo		u) 120
a) A network solid b) A metallic solid	c) Non-polar liquid	d) An ionic liquid
186. Which of the following is false?	c) Non-polar liquid	u) All follic fiquid
a) Glycerol has strong hydrogen bonding		
b) Glycol is a poisonous alcohols		
c) Waxes are esters of higher alcohols with higher	r acids	
d) Alkyl halides have higher b.p. than correspond		
187. lonic radii are:		
1		
a) ∝ effective nuclear charge		
b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$		
c) ∝ effective nuclear charge		
d) ∝ (effective nuclear charge) ²		
188. Which of the following statements is incorrect?		
a) He2 does not exist because its bond order is ze	ro	
b) O_2 , O_2^- and O_2^+ are all paramagnetic		
c) Any two atomic orbitals can combine to form t	wo molecular orbitals	
d) $\pi(2p_x)$ and $\pi(2p_y)$ are degenerate molecular of	rbitals	
189. Which of the following pairs will from the most s	table ionic bond?	
a) Na and Cl b) Mg and F	c) Li and F	d) Na and F
190. Among NaF, NaCl NaBr and NaI, the NaF has high	est melting point because:	
a) It has maximum ionic character		
b) It has minimum ionic character		
c) It has associated molecules		
d) It has least molecular weight		
191. The planar structure of BF ₃ can be explained by t		200401 2 4 0000000 101 0000000 177
a) sp hybridized b) sp^2 hybridised	c) sp ³ hybridised	d) $sp^3 d$ hybridized
192. The correct order of bond order value among the	following is	
(i) NO ⁺		
(iii)NO (iv) NO^{2+}		
(v) NO ²⁻	11 3 K 3 K 3 K 3 K	er companie
a) (i) $<$ (iv) $<$ (iii) $<$ (v)	b) $(iv) = (ii) < (i) < (v)$	
c) $(v) < (i) < (iv) = (iii) < (ii)$	d) (ii) < (iii) < (iv) < ((i) < (v)
193. The bond between chlorine and bromine in BrCl ₃	is:	
a) Ionic		
b) Non-polar		
c) Polar with negative end on Br		
d) Polar with negative end on Cl	2	
194. Which of the following has regular tetrahedral sh		D.V. E
a) [Ni(CN) ₄] ²⁻ b) SF ₄	c) [BF ₄] ⁻	d) XeF ₄
195. Which of the following will have large dipole mor	nent?	

- 196. PCl₅ exists but NCl₅ does not because:
 - a) Nitrogen has no vacant 2d-orbitals
 - b) NCl₅ is unstable
 - c) Nitrogen atom is much smaller than phosphorus
 - d) Nitrogen is highly mert
- 197. In which of the following pairs the two species are not isostructural?
 - a) PCl₄ and SiCl₄
- b) PF₅ and BrF₅
- c) AlF₆³⁻ and SF₆
- d) CO_3^{2-} and NO_3^{-}
- 198. The molecule having a pyramidal shape out of the following is
 - a) CO₂

b) BF₃

c) SF₄

- d) NH₃
- 199. If Na⁺ ion is larger than Mg²⁺ ion and S²⁻is larger thanCl⁻ ion, which of the following will be stable soluble in water?
 - a) Sodium chloride
- b) Sodium sulphide
- c) Magnesium chloride
- d) Magnesium sulphide
- 200. An atom of an element A has three electrons in its outermost orbit and that of B has six electrons in its outermost orbit. The formula of the compound between these two will be
 - a) A_3B_6
- b) A_2B_3
- c) A_3B_2
- d) A_2B
- 201. The energy of σ 2s-orbital is greater than σ * 1s orbital because:
 - a) $\sigma 2s$ orbital is bigger than $\sigma * 1s$ orbital
 - b) σ 2s orbital is a bonding orbital whereas, σ * 1s is an antibonding orbital
 - c) σ 2s orbital has a greater value of n than σ * 1s orbital
 - d) None of the above
- 202. The bond angle in ammonia molecule is
 - a) 90°3′
- b) 91°8′
- c) 106°45'
- d) 109°28'
- 203. The compound in which the number of d p bonds are equal to those present in $ClO_4^$
 - a) XeF4
- b) XeO₃
- c) XeO₄
- d) XeF.
- 204. The correct order of bond angles (smallest first) in H2S, NH3, BF3 and SiH4 is
 - a) $H_2S < SiH_4 < NH_3 < BF_3$

b) $NH_3 < H_2S < SiH_4 < BF_3$

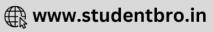
c) $H_2S < NH_3 < SiH_4 < BF_3$

- d) $H_2S < NH_3 < BF_3 < SiH_4$
- 205. A covalent molecule AB_3 has pyramidal structure. The number of lone pair and bond pair of electrons in the molecule are respectively.
- a) 2 and 2
- b) 0 and 4
- c) 3 and 1
- d) 1 and 3

- 206. Be in BeCl2 undergoes
 - a) Diagonal hybridisation

b) Trigonal hybridisation

c) Tetrahedral hybridisation


d) No hybridisation

- 207. Which statement is wrong?
 - a) Hybridisation is the mixing of atomic orbitals prior to their combining into molecular orbitals
 - b) sp^2 -hybrid orbitals are formed from two p-atomic orbitals and one s-atomic orbitals
 - c) dsp^2 -hybrid orbitals are all at 90° to one another
 - d) d^2sp^2 -hybrid orbitals are directed towards the corners of a regular tetrahedron
- 208. In the anion HCOO⁻ the two carbon-oxygen bonds are found to be of equal length. What is the reason for it?
 - a) Electronic orbits of carbon atom are hybridised
 - b) The C=O bond is weaker than the C O bond

	two resonating structures		
그 그 그 그 그 그 그 그 가장이 맛이 하는데 그 하나 있다면 하는데 그렇게 되었다.	by removal of a proton from		
209. Which of the following m			
a) NH ₃	b) C ₂ H ₄	c) CO ₂	d) SO ₂
210. Oxygen and the oxide ior	n have the		
 a) Same proton number 		b) Same electronic config	uration
c) Same electron number	r	d) Same size	
211. Valence bond theory of n	netallic bond was given by		
a) Dalton	b) Drudel	c) Fajan	d) Pauling
212. The correct order of second	ond ionisation potential of c	arbon, nitrogen, oxygen an	d fluorine is:
a) $C > N > 0 > F$	b) $0 > N > F > C$	c) $0 > F > N > C$	d) $F > O > N > C$
213. The molecule which has	T – shaped structure is		
a) PCl ₃	b) ClF ₃	c) NH ₃	d) BCl ₃
214. As a result of resonance:			
a) Bond length decreases	3		
b) Energy of the molecul	es decreases		
c) Stability of the molecu	lle increases		
d) All are correct			
215. The pair of species with t	the same bond order is:		
a) NO, CO	b) N ₂ , O ₂	c) O_2^{2-}, B_2	d) O ₂ ⁺ , NO ⁺
216. Which of the following m			
a) PF ₅	b) SF ₆ I	c) XeF ₆	d) $[Fe(CN)_6]^{3-}$
217. The number of types of b		- 15 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5	. (f 5 9) . HATE
a) One sigma, two pi	b) One sigma, one pi	c) Two sigma, one pi	d) Two sigma, two pi
218. The bond angle between)
a) 115°	b) 109°28′	c) 110°	d) 90°
219. If a molecule MX_3 has ze		XX 3 COMPANY	And America
a) Pure p	b) <i>sp</i> -hybrid	c) sp ² -hybrid	d) sp^3 -hybrid
220. Which combination of at			-,-,,
a) H and H	b) H and Br	c) N and N	d) Na and Br
221. The bond strength in O_2^+ ,		and the control of th	
	b) $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$		d) $0^{-}_{2} > 0^{2-}_{2} > 0^{+}_{2} > 0_{2}$
222. The shape of XeF ₄ molec		10 10	4,02,02,02
a) Tetrahedral and sp^3	are and my briansacion of xer	b) Square planar and dsp	2
c) Square planar and sp^3	3d2	d) Octahedral and sp^3d^2	
223. In H ₂ ion, the bond order		uj octaneurar anu sp u	
a) Zero	b) 1/2	c) -1/2	d) 1
224. H-bonding is not present		c) -1/2	u) i
a) Glycerine	b) Water	c) H ₂ S	d) HF
225. In which of the following	1871 MATERIAL STATE OF THE STAT	THE PROPERTY AND THE PARTY AND	100 Paris 11 Paris 12
	b) HBr	c) HI	d) HF
a) HCl		7	u) nr
226. The angle between the or			4) 120000/
a) 180°	b) 120°	c) 109°28′	d) 120°60′
227. How many bonds are the	ere in?		
\smile			
a) 14 σ, 8π	b) 18 σ, 8π	c) 19 σ, 4π	d) 14 σ, 2π
228. Which is the correct state			37

(ii) π-antibonding orl	(i) π -bonding orbitals are ungerade (ii) π -antibonding orbitals are ungerade				
(iii) σ-antibonding or	bitals are gerade				
a) (i) only	b) (ii) and (iii) only	c) (iii) only	d) (ii) only		
1.77	statement, the correct statem	2.70			
a) directional	directional				
directional	etron donor because the lone				
c) NH ₃ is a better electronal	ctron donor because the lone	pair of electron occupies sp	³ -orbital and more		
directional	tron donor because the lone	pair of electron occupies sp	herical <i>s</i> -orbital and is less		
230. Which is expected to		2 - 2			
a) SO ₂	b) CO ₂	c) CO ₃ ²⁻	d) SO ₄ ²⁻		
231. The bond angle in PH	₃ is:				
Commission No. 20000M BY 1000 MI	IH ₃ b) Equal to that in NH ₃	c) $\frac{\text{Much greater than in}}{\text{NH}_3}$	d) $\frac{\text{Slightly more than in}}{\text{NH}_3}$		
	in water shows the propertie				
a) K ⁺ , Mg ²⁺ , Cl ⁻		c) K ⁺ , Mg ²⁺ , CO ₃ ²⁻	d) K ⁺ , Mg ²⁺ , Cl ⁻ , Br ⁻		
	ate covalent bond is exhibited	973	N II 60		
a) HCl	b) NH ₃	c) C ₂ H ₂	d) H ₂ SO ₄		
	ethylene and acetylene, the C-	—н bond energy is:			
a) The same in all the	three compounds				
b) Greatest in ethanec) Greatest in ehtylen					
d) Greatest in acetyle					
	e van der Waals' force is likely	y to be the most important i	n determining the m n and		
b.p.?	, van der vradis force is likely	y to be the most important i	in determining the map, and		
a) Br ₂	b) CO	c) H ₂ S	d) HCl		
236. Identify the wrong sta					
5	ne elements increases as one i	moves down the first group	of the periodic table		
	ne elements decreases as one		7		
c) Amongst isoelectro	onic species, smaller the posit	tive charge on the cation, sm	naller is the ionic radius		
d) Amongst isoelectro	onic species, greater the nega	tive charge on the anion, lar	ger is the ionic radius		
237. (I)1, 2-dihydroxy ben	zene				
(II) 1, 3-dihydroxy be	nzene				
(III) 1, 4-dihydroxy b	enzene				
(IV) Hydroxy benzen					
	of boiling points of above me				
a) $I < II < III < IV$		b) $I < II < IV < III$			
c) $IV < I < II < III$		d) $IV < II < I < III$			
238. Dipole moment is sho		Appendition of the Control of the Co			
a) <i>cis</i> - 1, 2-dichloro e		b) trans-1, 2-dichloro etl	hane		
c) trans-1 2-dichloro		d) Both (a) and (c)			
	y sp^3d^2 -hybridization will ha	ave configuration:			
a) Square planar					
b) Octahedral					
c) Trigonal bipyramic	ıaı				

The sequence that correctly describes the relative both size of the following both cathor or anion is a) $0_1^2 > 0_2^2 > 0_2^2 > 0_2^2 > 0_2^2 > 0_2^2$ b) $0_1^2 > 0_2^2 > 0_2^2 > 0_2^2$ d) $0_1^2 > 0_2^2 > 0$	d) Dontagonal hinymomid	al		
a) PFs b) NHs c) BFs d) CHk contained c) Fixed c) BFs d) CHk c) C BFs d) CHk c) CHk	d) Pentagonal bipyramid			
241. The AsF_{5} molecule is trijeonal bipyramidal. The hybrid orbitals used by the As atoms for bonding are a) $d_{x^{2}-y^{2}}$, $d_{x^{2}}$,			a) DE	4) CII
a $d_x^2 - y^2$, d_z^2 , $s_1 P_z P_z$ b $d_x y_1$, $s_1 P_x P_z$ c c $s_1 P_x P_y P_z$, $s_2 P_x P_y$ d $d_x^2 - y^2$, $s_1 P_x P_y$ 242. The bond order of N_z^2 is b 3.0 c 2.5 c NO2 d MgCI_2 243. CO2 is isostructural with a C_2 P_2 P_3 P_4	Secretary and Control of the Control			0000 0000 000 0000
242. The bond order of N_2^{\pm} is a 1.5 b) 3.0 c) 2.5 d) 0 2.0 0 3.1.5 a) 0 3.0 c) 2.43. 0 0, 0 1.5 is isostructural with 0 3.0 c) 0 2.43. 0 0, 0 1.5 is isostructural with 0 3.0 c) 0 3.0 c) 0 3.0 c) 0 3.0 d) 0 MgCl ₂ 2.44. The compound with the maximum dipole moment among the following is: a) p -dichlorobenzene 0 b) p -dichlorobenzene 0 c) p -dichlorobenzene 0 b) p -dichlorobenzene 0 b) p -dichlorobenzene 0 b) p -dichlorobenzene 0 c) p -dichlorobenzene 0 c) p -dichlorobenzene 0 d) p -dichlorobenzene		3		
3 1.5		b) a_{xy} , s , P_x , P_z	$C_1 S, P_X, P_Y, P_Z, \alpha_{Z^2}$	$a_1 u_{x^2-y^2}, s, r_x, r_y$
243. CO2 is is ostructural with a $ c_2H _2$ by SnCl2 c $ c_3 $ NO2 d) MgCl2 244. The compound with the **maximum dipole moment among the following is: a) p -dichlorobenzene b) m -dichlorobenzene c $ c_3 $ o-dichlorobenzene d) Carbon tetrachloride 245. Which of the following bonds require the largest amount of energy to dissociate the bond concerned? a) $ c_3 $ H—H bond in $ c_3 $ b) C—H bond in $ c_4 $ c $ c_3 $ N =N bond in $ c_3 $ d) $ c_3 $ 0 =0 bond in $ c_2 $ 246. The sequence that correctly describes the relative bond strength pertaining to oxygen molecule and its cation or anion is a) $0 c_2^2 - 20 c_2 > 0 c_3^2 > 0 c$		13.00	3.0-	200
3 C2H2		b) 3.0	c) 2.5	d) 2.0
244. The compound with the maximum dipole moment and p-dichlorobenzene a) p-dichlorobenzene b) m-dichlorobenzene cl.5. Which of the following bords require the largest arount of energy to dissociate the bond concerned? a) H—H bond in H2 b) C—H bond in CH4 c) N \equiv N bond in N2 d) 0 = 0 bond in O2 cation or anion is a lo $\frac{1}{2}^2 > O_2 > O_2 > O_2^{\frac{1}{2}}$ b) C—H bond in CH4 c) N \equiv N bond in N2 voygen molecule and its cation or anion is a lo $\frac{1}{2}^2 > O_2 > O_2 > O_2^{\frac{1}{2}} > O_2 > O_2^{\frac{1}{2}}$ b) $O_2 > O_2^{\frac{1}{2}} > O_2^{\frac{1}{2}} > O_2^{\frac{1}{2}}$ co $\frac{1}{2}^2 > O_2 > O_2^{\frac{1}{2}} > O_2^{\frac{1}{2}} > O_2^{\frac{1}{2}}$ b) Sp^3d color by the type of hybridisation in XEF4 is a) Sp^2 b) Sp^3d color by Sp^3d co		1 None Cont		
245. Which of the following bombs require the largest amount of energy to dissociate the bond concerned? a) H—H bond in H₂ b) C—H bond in C4₄ c) N ≡ N bond in N₂ d) 0 = 0 bond in 0₂ 246. The sequence that corrective describes the relative bond strength pertaining to oxygen molecule and its cation or anion is a) 0½ > 0½ > 0½ > 0½ > 0½ > 0½ > 0½ > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 02 > 0½ c) 0½ > 02 > 0½ > 0½ c) 0½ c) 0½ c) 0½ > 02 > 0½ c) 0½		-		d) MgCl ₂
245. Which of the following both require the largest amount of energy to dissociate the bond concerned? a) H—H bond in H2 b) C—H bond in CH4 c) N \equiv N bond in N2 d) 0 \equiv 0 bond in O2 246. The sequence that correctly describes the relative bond strength pertaining to oxygen molecule and its cation or anion is a 0 $\stackrel{?}{2} > O_2 > O_$				
246. The sequence that correctly describes the relative bond strength pertaining to oxygen molecule and its cation or anion is a 3 0 $\frac{3}{2} > 0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2}$ b) $0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2}$ b) $0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2}$ c) $0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2}$ b) $0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2}$ d) $0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2} > 0\frac{2}{2}$ b) $p^{3}d$ c) $p^{3}d$ converted by the primary of hybridisation in XEF4 is a) dsp^{2} b) $p^{3}d$ c) $p^{3}d$ d) p^{3}				
246. The sequence that correctly describes the relative bond strength pertaining to oxygen molecule and its cation or anion is $a) 0_{2}^{2} > 0_{2} > 0_{2} > 0_{2} > 0_{2}$ $0 0_{2}^{2} > 0_{2} > 0_{2} > 0_{2}$ $0 0_{2}^{2} > 0_{2} > 0_{2}^{2} > 0_{2}$ $0 0_{2}^{2} > 0_{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2} > 0_{2}^{2}$ $0 0_{2}^{2} > 0_{2}^$	The state of the s			
cation or anion is a $0.92^2 > 0.2 > 0.2 > 0.2^2 > 0.$				
a) $0\frac{2}{2} > 0\frac{1}{2} > 0\frac{1}{$	<u> </u>	ctly describes the relative	bond strength pertaining	to oxygen molecule and its
247. The type of hybridisation in XEF4 is a) dsp^2 b) sp^3d c) sp^3d^2 d) sp^3d^3 248. What bond order does Li_2 have? a) 3 b) 1 c) 2 d) 0 0 249. Which have zero dipole moment? a) 1,1-dichloroethene b) $Cis-1$, 2-dichloroethene c) $trans-1$, 2-dichloroethene d) None of the above 250. Strongest bond is formed by the head on overlapping of: a) $2s$ - and $2p$ - orbitals b) $2p$ - and $2p$ - orbitals c) $2p$ - an				
247. The type of hybridisation in XEF4 is a) dsp^2 b) sp^3d c) sp^3d^2 d) sp^3d^3 248. What bond order does Li2 have? a) 3 b) 1 c) c) 2 d) 0, 0 249. Which have zero dipole moment? a) 1,1-dichloroethene b) $Cis-1$, 2-dichloroethene c) $Cis-1$, 2-dichloroethene b) $Cis-1$, 2-dichloroethene c) $Cis-1$, 2-dichloroethene d) None of the above 250. Strongest bond is formed by the head on overlapping of: a) $2s$ - and $2p$ - orbitals b) $2s$ - and $2p$ - orbitals c) $2s$ - and $2s$ - orbitals c) $2s$ - a				
a) dsp^2 b) sp^3d c) sp^3d^2 d) sp^3d^3 248. What bond order $does Li_2$ have? a) 3 b) 1 c) 2 d) 0 0 249. Which have zero dipole moment? a) 1,1-dichloroethene b) $Cis-1$, 2-dichloroethene c) $Cis-1$, 3-dichloroethene c) $Cis-1$, 3-dichlo			d) $0_2^+ > 0_2^- > 0_2^- > 0_2^{2-}$	
248. What bond order does Li₂ have? a) 3 b) 1 c) 2 d) 0 d) 0 249. Which have zero dipole bonner? a) 1,1-dichloroethene b) Cis-1, 2-dichloroethene c) 1,1-dichloroethene b) Cis-1, 2-dichloroethene c) Cis-1, 2-dichloroethene c) Cis-1, 2-dichloroethene c) the day on overlapping of the above 250. Strongest bond is formed by the head on overlapping of the above 251. Hybridization state of li in ICl² is: a) 2s -and 2p - orbitals b) 2p - and 2p - orbitals c) 2p - and 2s - orbitals d) All of these 251. Hybridization state of li in ICl² is: a) dsp^2 b) sp c) sp^2 d) dsp^3 252. Arrange the following compound in order of increasing dipole moment: Toluene (I) m-dichlorobenzene (IIV) p-dichlorobenzene (IIV) p-dichlorobenzene (IIV) a) 1 < IV < II < III < III < D) IV < I < III < III < D) IV < I < III < III < D) IV < I < III < III < D) IV < I < III < III < D) IV < I < III < III < D) IV < I < III < D) IV < II < II < D) IV < II < III < D) IV < II < D) IV < II < II < D) IV < II < D) I			200 2	
a) 3 b) 1 c) 49. Which have zero dipole moment? a) 1.1-dichloroethene b) Cis-1, 2-dichloroethene c) Cirans-1, 2-dichlorothene d) None of the above 250. Strongest bond is formed by the head on overlapping of: a) 2s - and 2p - orbitals b) 2p - and 2p - orbitals c) 2s - and 2s - orbitals d) All of these 251. Hybridization state of 1 in		, ,	c) sp^3d^2	d) sp^3d^3
249. Which have zero dipole $moment?$ a) 1.1-dichloroethene b) $Cis-1$, 2-dichloroethene c) $trans-1$, 2-dichlorothene d) None of the above 250. Strongest bond is formed by the head on overlapping of: a) $2s$ -and $2p$ -orbitals b) $2p$ - and $2p$ -orbitals c) $2s$ - and $2s$ - orbitals d) All of these 251. Hybridization state of I in $I \subset I_2^+$ is: a) dsp^2 b) sp c) sp^2 d) sp^3 252. Arrange the following compound in order of increasing dipole moment: Toluene (I) m -dichlorobenzene (III) p -dichlorobenzene (IV) a) $I \subset IV \subset III \subset III$ b) $IV \subset I \subset III \subset III$ c) $IV \subset I \subset III \subset III$ d) $IV \subset II \subset III$ 11 253. Which has maximum covalent character? a) $SiCl_4$ b) $MgCl_2$ c) $NaCl$ d) $AlCl_3$ 254. Which species does not exist? a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$ c) $(CCl_6)^{2-}$ d) $(SiCl_6)^{2-}$ 255. Among the following which has the highest cation to anion size ratio? a) Csl_1 b) Csl_2 c) Csl_2 d) Csl_2 d) Csl_2 d) Csl_2 256. The dipole moment of HBr is 1.6×10^{-30} cm and interraction spacing is 1.6×10^{-30} cm and interraction spacing is 1.6×10^{-30} d) Csl_2 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) Csl_2 a) Csl_2 b) Csl_2 c) Csl_2 d) Csl_2 d) Csl_2 d) Csl_2 d) Csl_2 258. Ionization potential is Csl_2 d)	248. What bond order does Li	2 have?		
a) 1,1-dichloroethene b) Cis-1, 2-dichloroethene c) trans-1, 2-dichloroethene d) None of the above 250. Strongest bond is formed by the head on overlapping of: a) 2s -and 2p -orbitals b) 2p - and 2p -orbitals c) 2s -and 2s - orbitals d) All of these 251. Hybridization state of I in IClt is: a) dsp² b) sp c) sp² d) sp³ 252. Arrange the following compound in order of increasing dipole moment: Toluene (I) o-dichlorobenzene (IIII) a) I < IV < II < III b) IV < I < II < III c) IV < I < III < III d) IV < II < III 253. Which has maximum covent character? a) SiCl4 b) MgCl2 c) NaCl d) AlCl3 254. Which species does not exist? a) (SnCl6) ²⁻ b) (GeCl6) ²⁻ c) (CCl6) ²⁻ d) (SiCl6) ²⁻ 255. Among the following which has the highest cation to anion size ratio? a) CSI b) CSF c) LiF d) NaF 256. The dipole moment of HBr is 1.6 × 10 ⁻³⁰ cm and inter - atomic spacing is 1 Å. The % ionic character of HBr is a) 7 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals	named Committee of the	2.500 Table 1000	c) 2	d) 0
b) Cis-1, 2-dichloroethene c) trans-1, 2-dichlorothene d) None of the above 250. Strongest bond is formed by the head on overlapping of: a) 2s - and 2p - orbitals b) 2p - and 2p - orbitals c) 2s - and 2s - orbitals d) All of these 251. Hybridization state of 1 in ICl_2^+ is: a) dsp^2 b) sp c) sp^2 d) sp^3 252. Arrange the following compound in order of increasing dipole moment: Toluene (I) m-dichlorobenzene (III) o-dichlorobenzene (III) o-dichlorobenzene (IIII) b) $IV < I < II < III < III$	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	noment?		
c) $trans-1$, 2-dichlorothered by the head on overlapping of: a) $2s$ - and $2p$ - orbitals b) $2p$ - and $2p$ - orbitals c) $2p$ - and $2p$ - orbitals b) $2p$ - and $2p$ - orbitals c) $2p$ - orbitals c) $2p$ - and $2p$ - orbitals c) $2p$ - orbitals	a) 1,1-dichloroethene			
d) None of the above 250. Strongest bond is formed by the head on overlapping of: a) $2s$ -and $2p$ -orbitals b) $2p$ - and $2p$ -orbitals c) $2p$ - and $2p$ - orbitals c) $2p$ - and $2p$ - an	7			
250. Strongest bond is formed by the head on overlapping of: a) $2s$ -and $2p$ -orbitals b) $2p$ - and $2p$ -orbitals c) $2s$ - and $2s$ - orbitals d) All of these 251. Hybridization state of I in $1Cl_2^+$ is: a) dsp^2 b) sp c) sp^2 d) sp^3 252. Arrange the following conditions or order of increasing dipole moment: Toluene (I) m-dichlorobenzene (II) o-dichlorobenzene (III) p-dichlorobenzene (IV) a) $1 < IV < II < III$ b) $IV < 1 < III$ c) $IV < I < III < III$ d) $IV < II < III$ 153. Which has maximum conditions an extracter? a) $SICl_4$ b) $MgCl_2$ c) $MgCl_2$ c) $MgCl_2$ d) $MgCl_2$ 254. Which species does not extracter? a) $MgCl_2$ c) $MgCl_2$ d) $MgCl_2$ d) $MgCl_2$ 255. Among the following whith has the highest cation to anion size ratio? a) $MgCl_2$ c) $MgCl_2$ d) $MgCl_2$ 256. The dipole moment of $MgCl_2$ c) $MgCl_2$ c) $MgCl_2$ d) $MgCl_2$ 257. When an element of $MgCl_2$ c) $MgCl_2$ c) $MgCl_2$ d) $MgCl_2$ expression of M	850	ne		
a) $2s$ -and $2p$ -orbitals b) $2p$ - and $2p$ -orbitals c) $2s$ - and $2s$ - orbitals d) 3 All of these 251. Hybridization state of I in $1Cl_2^+$ is : a) dsp^2 b) sp c) sp^2 d) sp^3 252. Arrange the following compound in order of increasing dipole moment: Toluene (I) m -dichlorobenzene (II) p -dichlorobenzene (IV) p -dichlorobenz				
251. Hybridization state of I in ICl $_2^+$ is : a) dsp^2 b) sp c) sp^2 d) sp^3 252. Arrange the following compound in order of increasing dipole moment: Toluene (I)			**************************************	
a) dsp^2 b) sp c) sp^2 d) sp^3 252. Arrange the following compound in order of increasing dipole moment: Toluene (I) m -dichlorobenzene (III) p -dichlorobenzene (IV) p -dichlorobenze		(may)	c) 2s- and 2s- orbitals	d) All of these
252. Arrange the following compound in order of increasing dipole moment: Toluene (I)				
Toluene (I) p -dichlorobenzene (III) p -dichlorobenzene (IV) p -dic			, ,	d) sp^3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	252. Arrange the following con	npound in order of increas	ing dipole moment:	
a) $1 < IV < II < III$ b) $IV < I < III < III$ c) $IV < I < III < III$ d) $IV < II < III$ 2533. Which has maximum covalent character? a) $SiCl_4$ b) $MgCl_2$ c) $NaCl$ d) $AlCl_3$ 254. Which species does not exist? a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$ c) $(CCl_6)^{2-}$ d) $(SiCl_6)^{2-}$ 255. Among the following which has the highest cation to anion size ratio? a) CSI b) CSF c) CIF d) CIF d) CIF with initial properties a) CIF b) CIF c) CIF d) CIF d) CIF with initial properties CIF d) d				
253. Which has maximum covalent character? a) SiCl ₄ b) MgCl ₂ c) NaCl d) AlCl ₃ 254. Which species does not exist? a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$ c) $(CCl_6)^{2-}$ d) $(SiCl_6)^{2-}$ 255. Among the following which has the highest cation to anion size ratio? a) CsI b) CsF c) LiF d) NaF 256. The dipole moment of HBr is 1.6×10^{-30} cm and inter – atomic spacing is 1 Å. The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:				
a) SiCl ₄ b) MgCl ₂ c) NaCl d) AlCl ₃ 254. Which species does not exist? a) (SnCl ₆) ²⁻ b) (GeCl ₆) ²⁻ c) (CCl ₆) ²⁻ d) (SiCl ₆) ²⁻ 255. Among the following which has the highest cation to anion size ratio? a) Csl b) CsF c) LiF d) NaF 256. The dipole moment of HBr is 1.6 × 10 ⁻³⁰ cm and inter – atomic spacing is 1 Å. The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	a) $I < IV < II < III$	b) $IV < I < II < III$	c) $IV < I < III < II$	d) $IV < II < I < III$
254. Which species does not exist? a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$ c) $(CCl_6)^{2-}$ d) $(SiCl_6)^{2-}$ 255. Among the following which has the highest cation to anion size ratio? a) CSI b) CSF c) CIF d) CSF 256. The dipole moment of CSF c) CIF d) CSF 257. When dipole moment of CSF b) CSF c) CIF d) CSF 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) CSF a) CSF b) CSF c) CSF d) CSF d) CSF 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) CSF a) CSF b) CSF c) CSF d) CSF d) CSF 258. Ionization potential is lowest for: a) CSF a) CSF b) CSF c) CSF c) CSF d) CSF	253. Which has maximum cov	alent character?		
a) (SnCl ₆) ²⁻ b) (GeCl ₆) ²⁻ c) (CCl ₆) ²⁻ d) (SiCl ₆) ²⁻ 255. Among the following which has the highest cation to anion size ratio? a) CsI b) CsF c) LiF d) NaF 256. The dipole moment of HBr is 1.6 × 10 ⁻³⁰ cm and inter – atomic spacing is 1 Å. The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	1753		c) NaCl	d) AlCl ₃
255. Among the following which has the highest cation to anion size ratio? a) CsI b) CsF c) LiF d) NaF 256. The dipole moment of HBr is 1.6×10^{-30} cm and inter – atomic spacing is 1 Å. The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals				
a) CsI b) CsF c) LiF d) NaF 256. The dipole moment of HBr is 1.6×10^{-30} cm and inter – atomic spacing is 1 Å . The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	a) $(SnCl_6)^{2-}$	b) (GeCl ₆) ²⁻	c) (CCl ₆) ²⁻	d) (SiCl ₆) ²⁻
256. The dipole moment of HBr is 1.6×10^{-30} cm and inter – atomic spacing is 1 Å. The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	255. Among the following whi	ch has the highest cation to	anion size ratio?	
is a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	a) CsI	b) CsF	c) LiF	d) NaF
a) 7 b) 10 c) 15 d) 27 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	256. The dipole moment of HB	or is $1.6 imes 10^{-30}$ cm and int	er – atomic spacing is 1 Å. T	The % ionic character of HBr
 257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are: 	is			
affinity, we get: a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	a) 7	b) 10	c) 15	d) 27
a) A weak ionic bond b) A strong ionic bond c) A polar covalent bond d) No bond 258. Ionization potential is lowest for: a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	257. When an element of very	low ionisation potential is	allowed to react with an ele	ement of very high electron
258. Ionization potential is lowest for: a) Halogens	affinity, we get:			
a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	a) A weak ionic bond	b) A strong ionic bond	c) A polar covalent bond	d) No bond
a) Halogens b) Inert gases c) Alkaline earth metals d) Alkali metals 259. The orbitals of same energy level providing the most efficient overlapping are:	258. Ionization potential is lov	vest for:	- we work as you to all young its	
259. The orbitals of same energy level providing the most efficient overlapping are:	- 18 Per 2010 Andre Salding Defende in Brown and Architecture (in 18 Per 2010) and an income and a second		c) Alkaline earth metals	d) Alkali metals
		gy level providing the mos	t efficient overlapping are:	
1907 AC TO TO TO TO THE				d) All of these
	ASSEL NO 1, 1944		बच <u>कि</u> । इंद	

260. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is equal to than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen							
261. Identify the non-polar m	d) Hydrogen and chlorine are gases 261. Identify the non-polar molecule in the set of compounds given						
HCl, HF, H ₂ , HBr	13 1101	3 WB WB	15.446				
a) H ₂	b) HCl	c) HF, HBr	d) HBr				
262. Which one of the follow	-		D 00				
a) CO ₂	b) SO ₂	c) N ₂ O	d) CO				
263. The increasing order of	the state of the s		21 - 1 - 2				
a) S ²⁻ , Cl ⁻ , Ca ²⁺ , K ⁺		c) K ⁺ , S ²⁻ , Ca ²⁺ , Cl ⁻	d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻				
264. Which cannot exist on the		6 000W	725 777				
a) C ₂	b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂				
265. Which of the following of							
a) PH ₃	b) CsF	c) HCl	d) H ₂ S				
266. $B_{10}C_2H_{12}$ is isoelectroni	c with						
a) $B_{12}H_{12}^{2-}$	b) B ₁₂ H ₁₂	c) $B_{12}H_{12}^+$	d) B ₁₂ H ₁₂ ²⁺				
267. The electronegativity of	A and B are 1.20 and 4.0 res	spectively. Therefore, ionic	character in $A - B$ bond will				
be							
a) 50%	b) 43%	c) 53.3%	d) 72.23%				
268. During the formation of	a chemical bond						
a) Electron-electron re	pulsion becomes more that	anb) Energy of the system o	does not change				
the nucleus-electron	repulsion attraction						
c) Energy increases		d) Energy decreases					
269. The number of ions form	ned when a molecule of K ₄ F	e(CN) ₆ dissociates is:					
a) 4	b) 5	c) 6	d) 2				
270. Pair of species having id	entical shapes for molecule	s is					
a) CF ₄ , SF ₄	b) BF ₃ , PCl ₃	c) XeF ₂ , CO ₂	d) PF ₅ , IF ₇				
271. An example of a polar co	ovalent compound is						
a) KCl	b) NaCl	c) CCl ₄	d) HCl				
272. Which is not an exception	on to octet rule?						
a) BF ₃	b) SnCl ₄	c) BeI ₂	d) ClO ₂				
273. The molecules having di	pole moment are:						
a) 2, 2-dimethylpropane	?						
b) Trans-3-hexene							
c) Trans-2-pentene							
d) 2, 2, 3, 3-tetramethyll	outane						
274. Which of the following s	pecies has a bond order oth	er than 3?					
a) CO	b) CN-	c) NO ⁺	d) O ₂ ⁺				
275. Which of the following is	s planar?	10 5 16/000	-				
a) XeF ₂	b) XeO ₃ F	c) XeO ₂ F ₂	d) XeF ₄				
276. Among the following sp							
a) CN^- and O_2^-	b) 0 ₂ and NO ⁺	c) CN ⁻ and NO ⁺	d) CN ⁻ and CN ⁺				
277. The bond angle and dipo			8				
a) 109.5°, 1.84 D	b) 107.5°, 1.56 D	c) 104.5°, 1.84 D	d) 102.5°, 1.56 D				
278. The correct order of inc			Design (\$1384) (1984) 4 (1974) 5844 (7486) (1974)				
a) $Cl_2O < ClO_2 < ClO_2^-$			d) $ClO_2^- < Cl_2O < ClO_2$				
279. Which compound shows		,	,				
a) RCH ₂ NHCH ₃	b) RCH ₂ CHO	c) C ₂ H ₆	d) HCl				
		, , ,	<i>₫</i> ((

280. Chlorine atom differs f	rom chloride ion in the num	ber of:	
a) Protons			
b) Neutrons			
c) Electrons			
d) Protons and electro	ns		
281. What is the reason for	unusual high b.p. of water?		
a) Due to the presence	of H ⁺ and OH ⁻ ions in wate	r b) Due to dipole - dipole	interactions
c) Due to London force	es	d) Strong London Forces	5
282. The increasing order of	of the first ionization enthalp	ies of the elements B, P, S ar	nd F (lower first) is:
a) $F < S < P < B$	b) $P < S < B < F$	c) $B < P < S < F$	d) $B < S < P < F$
283. The IP ₁ , IP ₂ , IP ₃ , IP ₄ , and	$^{ m HIP_5}$ of an element are 7.1, 14	4.3, 34.5, 46.8, 162.2 eV res _l	pectively. The element is
likely to be:			
a) Na	b) Si	c) F	d) Ca
284. Which of the following	is paramagnetic?		
a) B ₂	b) C ₂	c) N ₂	d) F ₂
285. Ionization potential of	Na would be numerically the	e same as:	
a) Electron affinity of I	Na ⁺		
b) Electronegativity of	`Na ⁺		
c) Electron affinity of l	He		
d) Ionization potential	of Mg		
286. Which one of the follow	wing conversions involve cha	-	
a) $CH_4 \rightarrow C_2H_6$	b) $NH_3 \rightarrow NH_4^+$	c) $BF_3 \rightarrow BF_4^-$	d) $H_2O \rightarrow H_3O^+$
287. According to MO theor			
	and bond order greater than		
	and bond order less than O ₂		
	nd bond order is less than O		
The State of the S	nd bond order is more than (
288. If the molecule of HCl	were totally polar, the expe	ected value of dipole mome	ent is 6.12 D (dbye), but the
experimental value of	dipole moment was 1.03 D. (Calculate the percentage ion	nic character
a) 17	b) 83	c) 50	d) Zero
289. The order of first elect	ron affinity of 0, S and Se is:		
a) $0 > S > Se$	b) $S > 0 > Se$	c) Se $> 0 > S$	d) Se $>$ S $>$ O
•	π -bond of ethane is located	in:	
a) The molecular plan			
b) A plane parallel to t	[유민씨는 1987년 1일 전 1986년 1986 1986 1986 1986 1986 1986 1986 1986		
	lar to the molecular plane wi		
	lar to the molecular plane wi	nich contains the carbon-ca	rbon σ-bond
291. The correct electroneg			
a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
	ring identical shapes for mole		
a) CF ₄ , SF ₄	b) XeF ₂ , CO ₂	c) BF ₃ , PCl ₃	d) PF ₅ , IF ₅
The state of the s	, the molecule that is linear i		
a) SO ₂	b) CO ₂	c) ClO ₂	d) NO ₂
1000	ict which of the following spe		
a) O_2^{2+}	b) 0 ₂ ⁺	c) O ₂	d) O ₂ ²⁻
295. The hybridisation of ca		16. 725.	SHEE CASE BIGG
a) sp	b) sp^2	c) sp^3	d) dsp^2
50	vo hybrid orbitals is 105°. Hy		
a) Between 20-21%	b) Between 19-20%	c) Between 21-22%	d) Between 22-23%
297. KF combines with HF	to form KHF ₂ . The compound	l contains the species:	

	and and another Property	Carl Program A. L. Colonia a serial
a) K^+, F^- and H^+ b) K^+, F^- and HF		· · · · · · · · · · · · · · · · · · ·
298. o-hydroxy benzaldehyde, although contains	s enolic group but does not give t	test of group with FeCl ₃
because:		
a) It is steam volatile		
b) Of intermolecular H-bonding		
c) Of intramolecular H-bonding		
d) All of the above		
299. Iron is tougher than sodium because:		
a) Iron atom is smaller		
b) Iron atoms are more closely packed		
c) Metallic bonds are stronger in iron		
d) None of the above		
300. Correct order of bond angles in NH ₃ , PCl ₃ and	nd RCl- is	
a) $PCl_3 > NH_3 > BCl_3$	b) $NH_3 > BCl_3 > PCl_3$	z
c) $NH_3 > PCl_3 > BCl_3$	d) $BCl_3 > NH_3 > PCl_3$	*
301. The number of π - bonds present in propyndary		3
	c) 3	d) 2
a) 4 b) 1 302. A bond with maximum covalent character b		17
	between non-metanic elements is	s formed:
a) Between identical atoms		
b) Between chemically similar atoms	4	
c) Between atoms of widely different electr	o-negativities	
d) Between atoms of the same size		
303. The compound in which underlined carbon	그리다 그 그리다 그리다 그리다 그 그리다 그리다 그리다 그리다 그리다	
a) CH ₃ <u>C</u> OOH b) CH ₃ <u>C</u> ONH ₂	c) CH ₃ CH ₂ OH	d) $CH_2\underline{C}H = CH_2$
304. Consider the following compounds		
(i) chloroethene (ii) benzene		
(iii) 1, 3-butadiene (iv) 1,3,5 – hexatrien	e	
All the carbon atoms are sp^2 hybridised in		
a) (i), (iii), (iv) only b) (i), (ii) only	c) (ii), (ii), (iv) only	d) (i), (ii), (iii) and (iv)
305. When ionic compounds get dissolved in wat	ter:	
a) They involve heat changes		
b) Inter-ionic attraction is reduced		
c) Ions show dipole-ion attraction with wat	er molecules	
d) All are correct		
306. Pick the odd one out (The one having zero o	dipole moment):	
a) NH ₃ b) H ₂ O	c) BCl ₃	d) SO ₂
307. Which of the following shows minimum bor	nd angle?	
a) H ₂ O b) H ₂ Se	c) H ₂ S	d) H ₂ Te
308. Among the following isostructural compour	nds, identify the compound whic	h has the highest lattice energy
a) LiF b) LiCl	c) NaCl	d) MgO
309. Which species is diamagnetic in nature?	p 1000 1000 1000	560 T1 1 1 00 00 00 00 00 00 00 00 00 00 00 0
a) He ₂ b) H ₂	c) H ₂ ⁺	d) H ₂
310. Which of the following compounds would h		•
a) CH ₃ CH ₂ CH ₂ CH ₃ b) CH ₃ NH ₂	c) CH ₃ OH	d) CH ₂ F ₂
311. Hybridisation of central atom in NF ₃ is	, 3	2 4 4
a) sp^3 b) sp	c) sp^2	d) dsp^2
312. Which of the compounds has highest boiling	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	60 J 1200 E22
a) Acetone b) Diethyl ether	c) Methanol	d) Ethanol
313. The number and type of bonds between two		
a) One sigma (σ) and one pi (π)-bond		
on a series of an Ary manners France, France		

	b) One sigma (σ) and tw	o pi (π)-bonds				
	c) One sigma (σ) and one and a half pi (π)-bond					
	d) One sigma (σ) bond					
31	314. Which of the following hydrogen bonds are strongest in vapour phase?					
	a) HFHF	b) HFHCl	c) HCLHCl	d) HFHi		
31	5. The bond angle and hyb	ridization in ether (CH ₃ OCH	I ₃) is:	₹6 -		
	a) $106^{\circ} 51'$, sp^3	b) 104° 31′, sp ³	c) 110° , sp^{3}	d) None of these		
31	6. Which has the highest be	ond energy?	Of Foods water	852.		
	a) Hydrogen bond	b) Triple bond	c) Double bond	d) Single bond		
31	7. Among the following cor		ar and has central atom wi			
	a) H ₂ CO ₃	b) SiF ₄	c) BF ₃	d) HClO ₂		
31	8. The incorrect statement		, ,	a s		
		otential of Al is less than the	first ionization potential o	f Mg		
		potential of Mg is greater t				
		otential of Na is less than th				
		otential of Mg is greater tha				
31	9. The bond angle is smalle	0 0				
	a) H ₂ O	b) H ₂ S	c) BeCl ₂	d) N ₂ O		
32	20. The number of electrons			-9-12-		
1050/5	a) 12	b) 10	c) 8	d) 11		
32	21. Acetic acid exists as dim	100 May 100 Ma		57 7 . (5.55)		
	a) Condensation reactio					
	b) Hydrogen bonding					
	c) Presence of carboxyl	group				
	d) Presence of hydrogen					
32	22. The correct order of hyb		om in the following species	NH ₂ , [PtCl ₄] ²⁻ , PCl ₅ and		
	BCl ₃ is:		0-1	3, [4]		
	-	b) sp^3 , dsp^2 , dsp^3 , sp^2	c) dsp^2 , sp^2 , sp^3 , dsp^3	d) dsp^2 , sp^3 , sp^2 , dsp^3		
32	23. Chemical bond formatio	그 그 그렇게 그래 그렇게 가지 가지 그래 그래 그래 그래	3			
855	a) Energy is absorbed					
		vercome forces of repulsion	ì			
		vercome forces of attraction				
	3	re equal to forces of repulsi				
32	24. NH ₃ has higher boiling p					
	a) With water it forms N	: : : : : : : : : : : : : : : : : : :				
	b) It has strong intermol	N 100 00 00 00 00 00 000 000 000 000 000				
	c) It has strong intermol					
	d) Its density decreases					
32	25. Which of the following r		re of N ₂ molecule?			
	1750	T2	NTA:	×× ××		
	a) ×N≡N×	b) **N===*N**	c) $\times N_{\times}^{\times} - N_{\times}^{\times}$	d) ${}^{\times}N = N {}^{\times}$		
		***	××	xx xx		
32	26. Which of the following h	as a bond order of 1.75?				
	a) ClO ₃	b) ClO ₄	c) NO ₃	d) CO_3^{2-}		
32	27. Higher is the bond order	, greater is:				
	a) Bond dissociation end	ergy				
	b) Covalent character					
	c) Bond length					
	d) Paramagnetism					
32	28. Which has the highest io	nisation potential?				

111021528102	a) Na	b) Mg	c) C	d) F
329). Strongest bond is in:		to take the property appropriately	1920 0021 garar
7523333	a) NaCl	b) CsCl	c) Both (a) and (b)	d) None of these
330	9590)		bond length of the species	
	a) $C_2 > C_2^{2-}$	b) $B_2^+ > B_2$	c) $\text{Li}_2^+ > \text{Li}_2$	d) $O_2 > O_2^-$
331	. The bond order in O_2^{2-} ion			
	a) 3	b) 2	c) 3/2	d) 1
332	2. Which is likely to have the		2 2222	700 -000-00
	a) He	b) CsF	c) NH ₃	d) CHCl ₃
333	Which of the following ar			
	1758 5t 5t	V	n give rise to dipole momer	ıt
	b) Dipole moment is vector			
	c) CO ₂ molecule has dipo		4 4 4 4	
			ms can lead to dipole mom	ent
334	I. In the formation of N ₂ fro			15.15.4
225	a) a σ-orbital	b) a π-orbital	c) a σ*-orbital	d) a π*-orbital
335	5. Bond angle of 109°28′ is i	round in		
	a) NH ₃	b) H ₂ O	c) ⊕ H ₅	d) [⊕] _{N H₄}
226	The half of the difference	hatwaan the number of ale		ar orbitals and antibonding
330	molecular orbitals is know		ctions in bonding molecula	ar orbitals and antiboliding
	a) Bond order	b) Proton order	c) Molecular order	d) Electron order
337			ame angle around the centr	
337	a) SF ₄ , CH ₄ , NH ₃	b) NF ₃ , BCl ₃ , NH ₃	c) BF ₃ , NF ₃ , AlCl ₃	d) BF ₃ , BCl ₃ , BBr ₃
338			gens, the chlorine is a gas, b	
550	iodine is a solid. This is be		gens, the emornie is a gas, b	omme is a nquia ana
	a) The specific heat is in t			
			ne are the weakest and thos	e in iodine are the
	strongest	among morecules of emorn	ie are the weakest and thos	o in rounce are the
	c) The order of density is	$l_2 > Br_2 > Cl_2$		
	d) The order of stability is			
339). Which of the following ha			
	a) BeF ₂	b) H ₂ O	c) NH ₃	d) CH ₄
340). Which of the following ha			(6. 3) 200 mg 4
	a) C ₆ H ₆	b) C ₂ H ₆	c) C ₂ H ₄	d) C ₂ H ₂
341	. Which one of the followin			,
	a) C ₂ ²⁻ , O ₂ , CO, NO	b) NO ⁺ , C ₂ ²⁻ , CN ⁻ , N ₂		d) N_2 , O_2^- , NO^+ , CO
342	2. The sp^3d^2 hybridisation			
	a) Square planar geometr			
	b) Tetrahedral geometry	<i>.</i>		
	c) Trigonal bipyramidal g	geometry		
	d) Octahedral geometry	North Contact Contact		
343	3. Methanol and ethanol are	e miscible in water due to:		
	a) Covalent character			
	b) Hydrogen bonding cha	racter		
	c) Oxygen bonding chara	cter		
	d) None of the above			
344	. The shape of ClF ₃ is			
	a) Distorted T- shape	b) Pyramidal	c) Tetrahedral	d) Trigonal planar
345	5. Which are true statement	ts among the following?		
		975V NTS		

(1) PH ₅ and BiCl ₅	does not exist		
(2) $p\pi$ — $d\pi$ bonds	are present in SO ₂		
(3) Electrons trave	el with speed of light		
(4) SeF ₄ and CH ₄ h	as same shape		
(5) I ₃ ⁺ has bent geo	ometry		
a) 1, 3	b) 1, 2, 5	c) 1, 3, 5	d) 1, 2, 4
346. The actual geometr	ry of NO ₂ is		
a) Planar	b) Linear	c) V-shape	d) Tetrahedral
347. Which has the low	est anion to cation size ratio?		
a) LiF	b) NaF	c) CsI	d) CsF
348. The energy change	accompanying the process give	n below is,	
$Na^+(g) + Cl^-(g) -$	→ NaCl(s):		
a) Hydration energ	gy b) Ionization energy	c) Electron affinity	d) Lattice energy
349. Which of the follow	ving has covalent bond?		
a) Na ₂ S	b) AlCl ₃	c) NaH	d) MgCl ₂
350. The correct order i	in which the $0-0$ bond length i		
a) $0_2 < 0_3 < H_2 0_3$	b) $H_2O_2 < O_3 < O_2$	c) $O_3 < O_2 < H_2O_2$	d) $O_2 < H_2 O_2 < O_3$
351. N ₂ is less reactive	than CN ⁻ due to		
그는 아프랑스 이렇게 하게 아이스 등에게 어려워 했다.	in quantum number	b) Presence of more elect	trons in orbitals
c) Absence of dipo		d) None of the above	
	cular orbital theory for O ₂ ⁺ :		
0.E8	ss than O_2 and O_2^+ is paramagne		
	ore than O_2 and O_2^+ is paramagn		
	ss than O_2 and O_2^+ is diamagnetic		
	ore than O_2 and O_2^+ is diamagne		
252 4			
	valent compounds, electrovalen	t compounds generally have	•
a) Low melting poi	ints and low boiling points	t compounds generally have	:
a) Low melting pointb) High melting point	ints and low boiling points ints and high boiling points	t compounds generally have	:
a) Low melting pointb) High melting pointc) Low melting point	ints and low boiling points ints and high boiling points ints and high boiling points	t compounds generally have	:
a) Low melting pointb) High melting pointc) Low melting pointd) High melting point	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points	t compounds generally have	:
 a) Low melting point b) High melting point c) Low melting point d) High melting point 354. Which is present in 	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points in peroxides?		
 a) Low melting point b) High melting point c) Low melting point d) High melting point 354. Which is present in a) O₂ 	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points in peroxides? b) 0 ²⁻	c) 0 ²⁻	d) O ₂
 a) Low melting points b) High melting points c) Low melting points d) High melting points 354. Which is present intall a O₂ 355. Two hybrid orbital 	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points i peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The	c) 0_2^{2-} e percentage ofs character ir	d) 0 ⁻ a the hybrid orbital is nearly
 a) Low melting points b) High melting points c) Low melting points d) High melting points 354. Which is present in a) O₂ 355. Two hybrid orbital a) 25% 	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The	c) 0 ²⁻	d) O ₂
 a) Low melting points b) High melting points c) Low melting points d) High melting points 354. Which is present intal a) O₂ 355. Two hybrid orbital a) 25% 356. Which molecule is 	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points in peroxides? b) 0 ²⁻ is have a bond angle of 120°. The b) 33% T-shaped?	c) 0_2^{2-} e percentage of character in c) 50%	d) 0_2^- n the hybrid orbital is nearly d) 66%
 a) Low melting points b) High melting points c) Low melting points d) High melting points 354. Which is present in a) O₂ 355. Two hybrid orbital a) 25% 356. Which molecule is a) BeF₂ 	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃	c) 0_2^{2-} e percentage ofs character ir	d) 0 ⁻ a the hybrid orbital is nearly
 a) Low melting points b) High melting points c) Low melting points d) High melting points 354. Which is present in a) O₂ 355. Two hybrid orbital a) 25% 356. Which molecule is a) BeF₂ 357. Which of the follow 	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic?	c) 0_2^{2-} e percentage ofs character in c) 50%	d) O_2^- a the hybrid orbital is nearly d) 66% d) ClF ₃
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follows a) O ₂	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points in peroxides? b) 0^{2-} Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻	c) 0_2^{2-} e percentage of character in c) 50%	d) 0_2^- n the hybrid orbital is nearly d) 66%
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbital a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is less than the second points and the second points are second points.	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for:	c) O_2^{2-} e percentage ofs character in c) 50% c) NH ₃ c) CO	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is lead of CHCl ₃	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points in peroxides? b) 0 ²⁻ is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for: b) CH ₄	c) 0_2^{2-} e percentage ofs character in c) 50%	d) O_2^- a the hybrid orbital is nearly d) 66% d) ClF ₃
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is last a) CHCl ₃ 359. Which will not considerations	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for: b) CH ₄ duct electricity?	c) O_2^{2-} c percentage of scharacter in c) 50% c) NH ₃ c) CO c) CHF ₃	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺ d) CCl ₄
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is last a) CHCl ₃ 359. Which will not comal Aqueous KOH so	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for: b) CH ₄ duct electricity? olution b) Fused NaCl	c) O ₂ ^{2–} e percentage ofs character in c) 50% c) NH ₃ c) CO c) CHF ₃ c) Graphite	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is lead of CHCl ₃ 359. Which will not comal a) Aqueous KOH so	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for: b) CH ₄ duct electricity? clution b) Fused NaCl ential order for which set is corr	c) O ₂ ²⁻ e percentage ofs character in c) 50% c) NH ₃ c) CO c) CHF ₃ c) Graphite	d) O_2^- the hybrid orbital is nearly d) 66% d) CIF_3 d) NO^+ d) CCl_4 d) KCl in solid state
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is beau a) CHCl ₃ 359. Which will not come a) Aqueous KOH so a) Aqueous KOH so a) Li > K > Cs	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0^{2-} Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for: b) CH ₄ duct electricity? clution b) Fused NaCl ential order for which set is corr b) B > Li > K	c) O_2^{2-} ce percentage of scharacter in c) 50% c) NH ₃ c) CO c) CHF ₃ c) Graphite rect? c) Cs > Li > B	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺ d) CCl ₄
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is last a) CHCl ₃ 359. Which will not consider a) Aqueous KOH so a) Aqueous KOH so a) Li > K > Cs 360. The ionization potes a) Li > K > Cs	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for: b) CH ₄ duct electricity? olution b) Fused NaCl ential order for which set is corr b) B > Li > K ermines the secondary structure	c) O_2^{2-} e percentage of scharacter in c) 50% c) NH_3 c) CO c) CHF_3 c) Graphite rect? c) $Cs > Li > B$ of a protein is:	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺ d) CCl ₄ d) KCl in solid state d) Cs < Li < K
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points d) High melting points 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is last a) CHCl ₃ 359. Which will not con a) Aqueous KOH so a) Aqueous KOH so a) Li > K > Cs 361. The bond that determined as a Coordinate bond	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points ints and low boiling points in peroxides? b) 0 ²⁻ Is have a bond angle of 120°. The b) 33% T-shaped? b) BCl ₃ ving is paramagnetic? b) CN ⁻ nighest for: b) CH ₄ duct electricity? olution b) Fused NaCl ential order for which set is corr b) B > Li > K ermines the secondary structure d b) Covalent bond	c) O_2^{2-} e percentage ofs character in c) 50% c) NH_3 c) CO c) CHF_3 c) $Graphite$ ect? c) $Cs > Li > B$ of a protein is: c) $Hydrogen bond$	d) O_2^- the hybrid orbital is nearly d) 66% d) CIF_3 d) NO^+ d) CCl_4 d) KCl in solid state
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points d) High melting points d) O ₂ 354. Which is present in a) O ₂ 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF ₂ 357. Which of the follow a) O ₂ 358. Dipole moment is lead of the control of t	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points	c) O_2^{2-} e percentage ofs character in c) 50% c) NH_3 c) CO c) CHF_3 c) $Graphite$ rect? c) $Cs > Li > B$ of a protein is: c) Hydrogen bond	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺ d) CCl ₄ d) KCl in solid state d) Cs < Li < K d) Ionic bond
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points d) High melting points d) O2 354. Which is present in a) O2 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF2 357. Which of the follow a) O2 358. Dipole moment is last a) CHCl3 359. Which will not comal a) Aqueous KOH so a) Aqueous KOH so a) Li > K > Cs 360. The ionization potents a) Li > K > Cs 361. The bond that detents a) Coordinate bond a) Pauling	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points	c) O_2^{2-} e percentage ofs character in c) 50% c) NH_3 c) CO c) CHF_3 c) $Graphite$ ect? c) $Cs > Li > B$ of a protein is: c) $Hydrogen bond$	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺ d) CCl ₄ d) KCl in solid state d) Cs < Li < K
a) Low melting points b) High melting points c) Low melting points d) High melting points d) High melting points d) High melting points d) O2 354. Which is present in a) O2 355. Two hybrid orbitals a) 25% 356. Which molecule is a) BeF2 357. Which of the follow a) O2 358. Dipole moment is last a) CHCl3 359. Which will not comal a) Aqueous KOH so a) Aqueous KOH so a) Li > K > Cs 360. The ionization potents a) Li > K > Cs 361. The bond that detents a) Coordinate bond a) Pauling	ints and low boiling points ints and high boiling points ints and high boiling points ints and low boiling points	c) O_2^{2-} e percentage ofs character in c) 50% c) NH_3 c) CO c) CHF_3 c) $Graphite$ rect? c) $Cs > Li > B$ of a protein is: c) Hydrogen bond	d) O ₂ the hybrid orbital is nearly d) 66% d) ClF ₃ d) NO ⁺ d) CCl ₄ d) KCl in solid state d) Cs < Li < K d) Ionic bond

364. In which of the following	ng molecules/ions are all the	bonds not equal?			
a) SF ₄	b) SiF ₄	c) XeF ₄	d) BF ₄		
365. Super octet molecule is		© SMAN	192 000 80 20		
a) F ₃ Cl	b) PCl ₃	c) NH ₃	d) None of these		
366. The number of unpaired electrons in a paramagnetic diatomic molecule of an element with atomic num					
16 is:	1774	3.0	1) 0		
a) 4	b) 1	c) 2	d) 3		
367. Which of the following					
Salah Sa	mixing of atomic orbitals pri	and the control of th			
	re formed from two p-atomi als are directed towards the				
	are all at 90° to one another	corners of a regular octane	uron		
368. Which statement is cor					
a) Pi-bond always exist					
b) Pi-bond can exist inc					
c) Sigma-bond is weak					
d) Pi-bond is less react					
369. Which of the following					
a) PCl ₅ and SF ₆	b) SO ₂ and NH ₃	c) PH ₃ and BCl ₃	d) NH_4^+ and SO_4^{2-}		
370. Which of the following	has dipole moment?				
a) CO ₂	b) p-dichlorobenzene	c) NH ₃	d) CH ₄		
371. Which one of the follow	ving is highest melting halide	?			
a) AgCl	b) AgBr	c) AgF	d) AgI		
372. The hybridisation state	and the control of th	n	200 2020 2		
a) sp^3d	b) sp^3d^2	c) sp^3	d) d^2sp^3		
	creasing bond angles in the f				
	b) $NO_2^+ < NO_2 < NO_2^-$		d) $NO_2^- < NO_2^+ < NO_2$		
a) $S^{2-} > Cl^{-} > K^{+} > C$	are isoelectronic. The decrea	sing order of their size is:			
a) $S^{-} > CI > K^{+} > CI^{-} >$ b) $Ca^{2+} > K^{+} > CI^{-} >$					
c) $K^+ > Cl^- > Ca^{2+} >$					
d) $Cl^- > S^{2-} > Ca^{2+} >$					
그 개선경기 역 작품	ybridization orbitals increase	es the hond angle:			
a) Increases	b) Decreases	c) Does not change	d) Becomes zero		
	AlF_3 is ionic. This fact can be		a) becomes zero		
1.5	b) Crystal structure	c) Lattice energy	d) Fajan rule		
377. Which one of the follow	ving is a correct set with resp	(i) (ii)	15 D		
a) $BeCl_2$, sp^2 , linear	.51	b) BeCl ₂ , sp ² , triangular	5.750		
c) BCl_3 , sp^2 , triangular	planar	d) BCl_3 , sp^3 , tetrahedral			
378. In BrF ₃ molecule, the lo	one pairs occupy equatorial p	oositions to minimize			
a) Lone pair – bond pa	ir repulsion only				
b) Bond pair – bond pa	ir repulsion only				
- 기계개인 STORES - 기계개인 - 기계기 기계기 기계기 기계기 기계 원인	repulsion and lone pair - bo	ond pair repulsion			
d) Lone pair – lone pair					
379. The correct order of de					
a) HF $> SO_2 > H_2O >$		b) $HF > H_2O > SO_2 > N$			
c) HF > NH ₃ > SO_2 >		d) $H_2O > NH_3 > SO_2 > I$	HF		
380. The process requiring		a) Cl . Cl=	d) $0 \to 0^{2-}$		
a) F - F ⁻	b) H → H ⁻	c) Cl → Cl ⁻			
$301. \text{ In } U_2, U_2 \text{ and } U_2^2 \text{ mole}$	cular species, the total numb	per of antibonding electrons	s respectively are		

a) 7, 6, 8	b) 1, 0, 2	c) 6, 6, 6	d) 8, 6, 8
382. sp^3 hybridisation is fou	ınd in	15 O. M	
a) CO ₃ ²⁻	b) BF ₃	c) NO ₃	d) NH ₃
383. Among the following m	37		300 - 7 1000 5 10 10
a) Cu	b) Ag	c) Zn	d) Hg
384. Which of the following			27 (77)
in orbitals approach ea	74		
a) Orbitals will overlap			
b) Orbitals will not over	rlap		
c) Bonding will take pla	ace		
d) A diatomic molecule	will be formed		
385. If the bond has zero per		ond is:	
a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent
386. Which bond angle θ wo		dipole moment for the triate	to the state of th
a) $\theta = 90^{\circ}$	b) $\theta = 120^{\circ}$	c) θ = 150°	d) $\theta = 180^{\circ}$
387. The species having bon	d order different from that i	in CO is	5
a) NO ⁻	b) NO ⁺	c) CN ⁻	d) N ₂
388. The species having octa	hedral shape is:	//5	100 m
a) SF ₆	b) BF ₄	c) PCl ₅	d) BO ₃ ³⁻
389. The following compoun	nds have been arranged in o	rder of their increasing thei	mal stabilities. Identify the
correct order:			<u></u>
$K_2CO_3(I)$	MgCO ₃ (II)		
CaCO ₃ (III)			
	b) $IV < II < III < I$	c) $IV < II < I < III$	d) $II < IV < III < I$
390. Which of the following	will show least dipole mome	ent?	CONFIDENCE DATE MENTON WELFARDS - PROTECTION
a) Ethane	b) Ether	c) Ethanol	d) Water
391. Which has the minimur	n bond energy?		
a) H—Br	b) H—I	c) I—I	d) H—H
392. The polarising ability o	f which one of the following	is highest?	
a) Small highly positive	ion		
b) Large positive ion			
c) Small highly negative	e ion		
d) Large negative ion			
393. Which is expected to sh	now paramagnetism?		
a) ClO ₂	b) SO ₂	c) CO ₂	d) SiO ₂
394. Highest covalent charac	cter is found in which of the	following?	
a) CaF ₂	b) CaCl ₂	c) Cal ₂	d) CaBr ₂
395. The molecule which has	s zero moment is		
a) CH ₃ Cl	b) NF ₃	c) BF ₃	d) ClO ₂
396. Hydrogen bond is stron			
a) SO	ngest in		
	ngest in b) OHS	c) F——HF	d) O——HN
397. The only molecule havi	b) OS	c) F——HF	d) O——HN
397. The only molecule havi a) 2,2-dimethylpropand	b) O——HS ng dipole moment is	c) FF	d) O——HN
	b) O——HS ng dipole moment is	c) F——HF	d) O——HN
a) 2,2-dimethylpropand	b) O——HS ng dipole moment is	c) FF	d) O——HN
a) 2,2-dimethylpropand b) <i>trans</i> -2-pentene	b) O——HS ng dipole moment is e	c) F——HF	d) O——HN
a) 2,2-dimethylpropaneb) <i>trans</i>-2-pentenec) <i>trans</i>-3-hexene	b) O——HS ng dipole moment is e	Total Annual Control of Control o	d) O——HN
a) 2,2-dimethylpropaneb) <i>trans</i>-2-pentenec) <i>trans</i>-3-hexened) 2,2,3,3-tetramethylb	b) O——HS ng dipole moment is e	Total Annual Control of Control o	d) O——HN

Compound	Lattice enthalpy (in kJ mol ⁻¹)	Hydration enthalpy (in kJ mol ⁻¹)
P	+780	-920
Q	+1012	-812
R	+828	-878
S	+632	-600

The pair of compounds which is soluble in water is

- a) Pand Q
- b) Q and R
- c) Rand S
- d) P and R

400. The increase in bond order results in:

- a) Decrease in bond length and increase in bond energy
- b) Decrease in bond length and bond energy
- c) Increase in bond length and bond energy
- d) None of the above

401. The correct stability order of the following resonance structure is

$$H_2C = \stackrel{+}{N} = \bar{N}$$
 $H_2C = N = \bar{N}$
 $H_2\bar{C} = \stackrel{+}{N} = N$ $H_2\bar{C} = N = \stackrel{+}{N}$

a) (I)> (II) > (IV) > (III)
b) (I)> (II) > (IV) > (IV)

c) (II)> (I) > (IV) > (IV)

- 402. Which is not characteristic of π -bond?
 - a) π -bond is formed when a sigma bond already formed
 - b) π -bond is formed from hybrid orbitals
 - c) π -bond may be formed by the overlapping of p-orbitals
 - d) π -bond results from lateral overlap of atomic orbitals
- 403. A molecule in which sp^2 -hybrid orbitals are used by the central atom in forming covalent bond is:

- c) PCl₅

404. Which species has the highest bond order?

c) N₂

d) Both O_2 and O_2^{2-}

- 405. Molecular shapes of SF₄, CF₄, XeF₄ are
 - a) The same with 2, 0 and 1 lone pair of electron respectively
 - b) The same with 1, 1 and 1 lone pair of electrons respectively
 - c) Different with 0, 1 and 2 lone pair of electrons respectively
 - d) Different with 1, 0 and 2 lone pair of electrons respectively
- 406. The correct sequence of hybridisation of methane, ethene and acetylene is
- a) sp, sp^2, sp^3 b) sp^2 , sp^3 , sp
- c) sp^3 , sp^2 , sp
- d) sp^3 , sp, sp^2

- 407. The nature of the bond in diamond is
 - a) Ionic
- b) Covalent
- c) Metallic
- d) Coordinate covalent
- 408. The set representing the correct order of first ionization potential is:
 - a) K > Na > Li
- b) Be > Mg > Ca
- c) B > C > N
- d) Ge > Si > C
- 409. Amongst the following, the molecule that is linear is b) BeH₂ c) ClO₂
 - a) SO₂

- d) NO2
- 410. Which of the following species does not exist under normal conditions?
 - a) Be^{2+}
- b) Be₂

c) B₂

d) Li2

- 411. How many σ and π bonds are present in toluene?
 - a) $3\pi + 8\sigma$
- b) $3\pi + 10\sigma$
- c) $3\pi + 15\sigma$
- d) $6\pi + 3\sigma$

- 412. Octet rule is not valid for the molecule:
 - a) CO₂
- b) H₂O
- c) 0_2

d) CO

413. CO_2 has the same geon (A) $HgCl_2$, (B) NO_2 , (C)	-		
a) A and C	b) B and D	c) A and D	d) Cand D
		20 20 20 conserve Moreon	
	in the molecular orbital theo	ory depends on the number	of electrons in the boliding
and antibonding orbit			
a) Can have a –ve valu			
b) Has always an integ			
c) Is a non-zero quant			
	e value, including zero	5.39	
	τ-bonds in pent-4-en-1-yne a		20.40.0
a) 3, 10	b) 9, 4	c) 4, 9	d) 10, 3
(A)	1, 1, 2, 2-tetrachloroethene		145)
a) 109.5° and 900°	b) 120° and 109.5°	c) 90° and 109.5°	d) 109.5° and 120°
	st tendency to form anions?	2 30 3 51	
a) Ga, In, Te	b) Na, Mg, Al	c) N, O, F	d) V, Cr, Mn
50	ecular orbital theory we can g	give the electronic configur	ation of the singly positive
nitrogen molecular ion	(, , , , , , , , , , , , , , , , , , ,		
a) $l\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2$,		b) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, σ^*	
c) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$	Carried annual and service and	d) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$	$2s^2$, $\sigma 2p^2$, $\pi 2p^4$
	boiling point than PH ₃ becaus	se	
a) NH ₃ has larger mol			
b) NH ₃ undergoes um			
c) NH ₃ forms hydroge		Harri War (Spr	
	bonds whereas PH ₃ contains		
	are located at the positions of	f:	
a) Maximum potential			
b) Minimum potential			
c) Zero potential ener	75.70		
d) Infinite potential er			
	the greatest ionic character?	10.0	
a) Cl ₂ O	b) NCl ₃	c) PbCl ₂	d) BaCl ₂
	e metal decreases with increa	ises in temperature becaus	e
	of the electron increases		
아이는 하는 맛이 맛이 하는 것이 하고 말하는 것이 뭐 하는데 다른데 없다.	lectrons becomes haphazard		
c) The kernels start vi		.0	
	hot and starts emitting radia		1
	g when dissolved in water for		ducting?
a) Chile salt petre		b) Potash alum	
c) Green vitriol	₩ 520	d) Ethyl alcohol	
424. Which bond is more p		g (2) (2)	
a) Cl—Cl	b) N—F	c) C—F	d) 0—F
425. The pairs of bases in D			
a) Hydrogen bonds	b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups
426. Which of the following			Care Section
a) H ₂ O	b) H ₂ S	c) NH ₃	d) PH ₃
	ch carbon atom uses only sp^3		
а) НСООН	b) NH ₂ CONH ₂	c) (CH ₃) ₃ COH	d) CH ₃ CHO
507	tions; (I) Covalent bond, (II)		이 계속이 가장 가장 하는 것이 없는 것이 없는 것이 없는 것이 없다.
70 S	ion, which represents the cor	rect order of increasing sta	ability?
a) $(I) < (III) < (II) <$	(IV)		

b) (II) < (III) < (IV) < (
c) $(II) < (IV) < (III) < ($			
d) $(IV) < (II) < (III) < ($	I)		
429. If the ionization potentia	l for hydrogen atom is 13.6	eV, then the ionization pot	ential for He ⁺ ion should
be:			
a) 72.2 eV	b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
430. The hydrogen bonding is	strongest in:		
a) O—H S	b) S—H O	c) F—H F	d) F—H O
431. The correct increasing or	rder of polarising power is:		
a) $Ca^{2+} < Mg^{2+} < Be^{2+}$	< K ⁺		
b) $Mg^{2+} < Be^{2+} < K^+ <$	Ca ²⁺		
c) $Be^{2+} < K^+ < Ca^{2+} < Ca^{2+} < Ca^{2+}$	Mg ²⁺		
d) $K^+ < Ca^{2+} < Mg^{2+} <$	Be ²⁺		
432. Acetate ion contains:			
a) One C, O single bond a	nd one C. O double bond		
b) Two C, O single bonds			
c) Two C, O double bond			
d) None of the above			
433. Which one is paramagne	tic and has the bond order l	half (0.5)?	
a) F ₂	b) N ₂	c) O ₂	d) H ₂ ⁺
434. Which one is correct?	0) 1.7	c) 0 ₂	w) 112
a) Dinitrogen is paramag	metic		
b) Dihydrogen is parama			
c) Dioxygen is paramagn			
d) Dioxygen is diamagne			
435. IP is influenced by:			
a) Size of atom			
b) Charge on nucleus			
c) Electrons present in ir	ner shells		
d) All of the above			
436. The hybridization of ator	nic orbitals of nitrogen in N	10^{+}_{2} , $N0^{-}_{2}$ and NH_{4}^{+} are:	
a) sp, sp^3 and sp^2 respec		2, 3 4	
b) sp, sp^2 and sp^3 respec			
c) sp^2 , sp and sp^3 respec			
d) sp^2 , sp^3 and sp respect			
437. The bond between carbo		pound $N = C - CH = CH_0$	
io,, ine some serveen carso	(1) (2)	(1) (2)	
involves the hybrid orbit	als:	(-) (-)	
a) sp^2, sp^3	b) sp, sp^2	c) sp, sp^3	d) <i>sp</i> , <i>sp</i>
438. Which of the following ha		-) -E/-F	-7
a) NaCl	b) CuCl	c) CuCl ₂	d) CsCl
439. When metals react with		(A)	u) 555.
a) Share electrons	b) Lose electrons	c) Gain electrons	d) None of the above
440. Which one has more tend			a) Trone of the above
a) Ba	b) Be	c) Mg	d) Ca
441. The order of melting poin			,
a) $o > m > p$	b) $p > m > o$	c) $m > p > o$	d) $p > o > m$
442. Number of non-bonding	1000		(5) (5)
a) 6, 4, 2	b) 1, 2, 3	c) 3, 2, 1	d) 0, 3, 2
443. The hybridization of carl			7 7 7 7
	9. np		

a) sp^3 , sp^2 , sp			
		c) sp^2, sp^3, sp	d) sp, sp^3sp^2
444. The molecule, ion which	10mm 역 (10mm) 일 및 10mm (10mm) 10mm (10mm) 10mm (10mm)	SV COMMUNICATION AND	
a) NO ₃	b) PCl ₃	c) CO ₃ ²⁻	d) SO ₃
445. The number of lone pai	rs of Xe in XeF $_2$, XeF $_4$ and X	leF ₆ respectively are	
a) 3, 2, 1	b) 2, 4, 6	c) 1, 2, 3	d) 6, 4, 2
446. The electronic structure	e of the four elements A, B ,	C and D are, $(A) = 1s^2$; (B)	$0 = 1s^2, 2s^22p^2; (C) =$
$1s^2, 2s^2 2p^5; (D) = 1s^2$	$2s^{2}2p^{6}$.		
The tendency to form e	lectrovalent bond is maxim	um in:	
a) A	b) <i>B</i>	c) C	d) <i>D</i>
447. C – C bond order in ber	nzene is		
a) 1	b) 2	c) Between 1 and 2	d) None of these
448. For the formation of co	valent bond, the difference	in the value of electronegat	ivities should be:
a) Equal to or less than	1.7		
b) More than 1.7			
c) 1.7 or more			
d) None of the above			
449. Which among the follow	wing elements has lowest v	alue of ionisation energy?	
a) Pb	b) Sn	c) Si	d) C
450. In coordinate bond, the	acceptor atoms must esser	ntially contain in its valency	shell an orbitals:
 a) With paired electron 	b) With single electron	c) With no electron	d) With three electrons
451. How many σ-and π -bor	nds are there in the molecul	e of tetracyanoethylene?	
N≡C∖ C≡	≣N		
>c=c<			
N≡C C≡	=N		
a) Nine σ - and nine π	b) Five σ- and nine π	c) Nine σ - and seven π	d) Five σ - and eight π
a) while o- and mile it	b) rive o- and mile it		
452 Paramagnetism of ovva	The property of the first of the second state of the second secon		
452. Paramagnetism of oxyg	en is explained on the basis	s of its electronic configurat	ion of
	en is explained on the basis		ion of
	gen is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$	s of its electronic configurate c) $\binom{*}{\sigma_{2s}}^{1} (\pi_{2p_y})^{1}$	ion of
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) SrCl ₂	ten is explained on the basis b) $(\pi^2 2p_y)^1 (\pi^2 2p_z)^1$ ing most strongly ionic nat b) BaCl ₂	s of its electronic configurate c) $\binom{*}{\sigma_{2s}}^1 \left(\pi^2 p_y\right)^1$ ure is: c) CaCl ₂	ion of
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess	ten is explained on the basis b) $(\pi^2 2p_y)^1 (\pi^2 2p_z)^1$ ing most strongly ionic nat b) BaCl ₂	s of its electronic configurate c) $\binom{*}{\sigma_{2s}}^1 \left(\pi^2 p_y\right)^1$ ure is: c) CaCl ₂	ion of $d) \left({\stackrel{*}{\sigma}}_{2s} \right)^1 \left({\pi}_{2p_y} \right)^1$
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) SrCl ₂	ten is explained on the basis b) $(\pi^2 2p_y)^1 (\pi^2 2p_z)^1$ ing most strongly ionic nat b) BaCl ₂	s of its electronic configurate c) $\binom{*}{\sigma_{2s}}^1 \left(\pi^2 p_y\right)^1$ ure is: c) CaCl ₂	ion of $d) \left({\stackrel{*}{\sigma}}_{2s} \right)^1 \left({\pi}_{2p_y} \right)^1$
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) $SrCl_2$ 454. The complex ion which	ten is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the of b) $[Co(NH_3)_6]^{3+}$	s of its electronic configurate $(\sigma_{2s})^1 (\pi_2 p_y)^1$ ure is: c) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ central metal atom is:	ion of d) $(\sigma_{2s})^1 (\pi 2p_y)^1$ d) CsCl d) $[Cr(H_2O)_6]^{3+}$
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) $SrCl_2$ 454. The complex ion which a) $[MnO_4]^-$ 455. Which of the following a) O_2	gen is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the o b) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) O_2^+	s of its electronic configurate c) $\binom{*}{\sigma 2s}^1 \left(\pi 2p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$	ion of d) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ d) CsCl d) $[\text{Cr}(H_2 O)_6]^{3+}$ d) O_2^{2-}
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) $SrCl_2$ 454. The complex ion which a) $[MnO_4]^-$ 455. Which of the following	gen is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the o b) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) O_2^+	s of its electronic configurate c) $\binom{*}{\sigma 2s}^1 \left(\pi 2p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$	ion of d) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ d) CsCl d) $[\text{Cr}(H_2 O)_6]^{3+}$ d) O_2^{2-}
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) $SrCl_2$ 454. The complex ion which a) $[MnO_4]^-$ 455. Which of the following a) O_2	gen is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the o b) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) O_2^+	s of its electronic configurate c) $\binom{*}{\sigma 2s}^1 \left(\pi 2p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$	ion of d) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ d) CsCl d) $[\text{Cr}(H_2 O)_6]^{3+}$ d) O_2^{2-}
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) $SrCl_2$ 454. The complex ion which a) $[MnO_4]^-$ 455. Which of the following a) O_2 456. The dipole moment of H	gen is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the o b) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) O_2^+	s of its electronic configurate c) $\binom{*}{\sigma 2s}^1 \left(\pi 2p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$	ion of d) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ d) CsCl d) $[\text{Cr}(H_2 O)_6]^{3+}$ d) O_2^{2-}
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is 	gen is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the ob) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) 0_2^+ HBr is 1.6×10^{-30} C-m and $\frac{1}{\pi}$	s of its electronic configurate c) $\binom{*}{\sigma_2 s}^1 \left(\pi^2 p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)_6]^{3-}}$ c) O_2^- interatomic spacing is 1Å. To c) 15	ion of $d) \left({* \atop \sigma^2 S} \right)^1 \left({\pi^2 p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) SrCl ₂ 454. The complex ion which a) $[\text{MnO}_4]^-$ 455. Which of the following a) O ₂ 456. The dipole moment of H is a) 7	gen is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the ob) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) 0_2^+ HBr is 1.6×10^{-30} C-m and $\frac{1}{\pi}$	s of its electronic configurate c) $\binom{*}{\sigma_2 s}^1 \left(\pi^2 p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)_6]^{3-}}$ c) O_2^- interatomic spacing is 1Å. To c) 15	ion of $d) \left({* \atop \sigma^2 S} \right)^1 \left({\pi^2 p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ 453. The compound possess a) SrCl ₂ 454. The complex ion which a) $[\text{MnO}_4]^-$ 455. Which of the following a) O ₂ 456. The dipole moment of H is a) 7 457. Which group of atoms h	ten is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the of b) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) 0_2^+ HBr is 1.6×10^{-30} C-m and of b) 10 have nearly same atomic ra b) Li, Be, B, C	s of its electronic configurate c) $\binom{*}{\sigma_2 s}^1 \left(\pi_2 p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$ c) O_2^- interatomic spacing is 1Å. To c) 15 dius?	ion of $d) \left({* \atop \sigma 2s} \right)^1 \left({\pi 2p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr $d) 27$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom 	ten is explained on the basis b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the of b) $[\text{Co}(\text{NH}_3)_6]^{3+}$ species is least stable? b) 0_2^+ HBr is 1.6×10^{-30} C-m and of b) 10 have nearly same atomic ra b) Li, Be, B, C	s of its electronic configurate c) $\binom{*}{\sigma_2 s}^1 \left(\pi_2 p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$ c) O_2^- interatomic spacing is 1Å. To c) 15 dius?	ion of $d) \left({* \atop \sigma 2s} \right)^1 \left({\pi 2p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr $d) 27$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom a) Difference in electro 	ten is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ $\binom{1}{\pi}$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the electrons in the electrons is least stable? b) $\binom{1}{\pi} 2p_z$ b) $\binom{1}{\pi} 2p_z$ HBr is 1.6×10^{-30} C-m and the electrons is least stable? b) 10 have nearly same atomic rate b) Li, Be, B, Conic molecule is because of	s of its electronic configurate c) $\binom{*}{\sigma} 2s$ $\binom{1}{\sigma} (\pi 2p_y)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$ c) O_2^- interatomic spacing is 1Å. The configuration of the configur	ion of $d) \left({* \atop \sigma 2s} \right)^1 \left({\pi 2p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr $d) 27$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom a) Difference in electro 	ten is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the oblight is least stable? b) $\binom{*}{2}$ HBr is 1.6×10^{-30} C-m and b) 10 have nearly same atomic rable is because of affinity of the two atoms negativities of the two atoms	s of its electronic configurate c) $\binom{*}{\sigma} 2s$ $\binom{1}{\sigma} (\pi 2p_y)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$ c) O_2^- interatomic spacing is 1Å. The configuration of the configur	ion of $d) \left({* \atop \sigma 2s} \right)^1 \left({\pi 2p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr $d) 27$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom a) Difference in electro b) Difference in electro c) Difference in ionisati d) All of the above 	ten is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the oblight is least stable? b) $\binom{*}{2}$ HBr is 1.6×10^{-30} C-m and should be nearly same atomic rable. Li, Be, B, Conic molecule is because of a affinity of the two atoms negativities of the two atoms ion potential	s of its electronic configurate c) $\binom{*}{\sigma} 2s$ $\binom{1}{\sigma} (\pi 2p_y)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)}_6]^{3-}$ c) O_2^- interatomic spacing is 1Å. To c) 15 dius? c) Fe, Co, Ni, Cu	ion of $d) \left({* \atop \sigma 2s} \right)^1 \left({\pi 2p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr $d) 27$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom a) Difference in electro b) Difference in electro c) Difference in ionisation 	ten is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the oblight is least stable? b) $\binom{*}{2}$ HBr is 1.6×10^{-30} C-m and should be nearly same atomic rable. Li, Be, B, Conic molecule is because of a affinity of the two atoms negativities of the two atoms ion potential	s of its electronic configurate $(\sigma_{2s})^1 (\pi_2 p_y)^1$ ure is: c) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ ure is: c) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ ure is: c) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ central metal atom is: c) $(\sigma_{2s})^1 (\sigma_{2s})^1$ c) $(\sigma_{2s})^2$ interatomic spacing is 1Å. The control of the control o	ion of $d) \left({* \atop \sigma 2s} \right)^1 \left({\pi 2p_y} \right)^1$ $d) CsCl$ $d) [Cr(H_2O)_6]^{3+}$ $d) O_2^{2-}$ he % ionic character of HBr $d) 27$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom a) Difference in electro b) Difference in electro c) Difference in ionisati d) All of the above 	ten is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the oblight is least stable? b) $\binom{*}{2}$ HBr is 1.6×10^{-30} C-m and should be nearly same atomic rable. Li, Be, B, Conic molecule is because of a affinity of the two atoms negativities of the two atoms ion potential	s of its electronic configurate $(\sigma_{2s})^1 (\pi_2 p_y)^1$ ure is: c) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ ure is: c) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ ure is: c) $(\sigma_{2s})^1 (\pi_2 p_y)^1$ central metal atom is: c) $(\sigma_{2s})^1 (\sigma_{2s})^1$ c) $(\sigma_{2s})^2$ interatomic spacing is 1Å. The control of the control o	ion of $d) \begin{pmatrix} * \\ \sigma_{2s} \end{pmatrix}^{1} \begin{pmatrix} \pi_{2p_{y}} \end{pmatrix}^{1}$ $d) CsCl$ $d) [Cr(H_{2}O)_{6}]^{3+}$ $d) O_{2}^{2-}$ $he % ionic character of HBr$ $d) 27$ $d) F, Cl, Br, I$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom a) Difference in electro b) Difference in electro c) Difference in ionisati d) All of the above 459. The hybridization of P i a) I in ICl₄⁻ 	ten is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the electrons in the electrons in the electrons is least stable? b) $\binom{*}{2}$ HBr is 1.6×10^{-30} C-m and shown that is 1.6×10^{-30} C-m and shown that is because of a affinity of the two atoms negativities of the two atoms ion potential in $\binom{*}{2}$ is same as in: b) S in SO ₃	s of its electronic configurate c) $\binom{*}{\sigma_2 s}^1 \left(\pi^2 p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)_6]^{3-}}$ c) O_2^- interatomic spacing is 1Å. To c) 15 dius? c) Fe, Co, Ni, Cu	ion of $d) \begin{pmatrix} * \\ \sigma_{2s} \end{pmatrix}^{1} \begin{pmatrix} \pi_{2p_{y}} \end{pmatrix}^{1}$ $d) CsCl$ $d) [Cr(H_{2}O)_{6}]^{3+}$ $d) O_{2}^{2-}$ $he % ionic character of HBr$ $d) 27$ $d) F, Cl, Br, I$
 a) (*π2p_x)¹(π2p_y)¹ 453. The compound possess a) SrCl₂ 454. The complex ion which a) [MnO₄]⁻ 455. Which of the following a) O₂ 456. The dipole moment of H is a) 7 457. Which group of atoms H a) Na, K, Rb, Cs 458. Bond polarity of diatom a) Difference in electro b) Difference in electro c) Difference in ionisati d) All of the above 459. The hybridization of P i a) I in ICl₄⁻ 	ten is explained on the basis b) $\binom{*}{\pi} 2p_y$ $\binom{*}{\pi} 2p_z$ $\binom{*}{\pi} 2p_z$ ing most strongly ionic nat b) BaCl ₂ has no 'd' electrons in the electrons in the electrons in the electrons is least stable? b) $\binom{*}{2}$ HBr is 1.6×10^{-30} C-m and shown that is 1.6×10^{-30} C-m and shown that is because of a affinity of the two atoms negativities of the two atoms ion potential in $\binom{*}{2}$ is same as in: b) S in SO ₃	s of its electronic configurate c) $\binom{*}{\sigma_2 s}^1 \left(\pi^2 p_y\right)^1$ ure is: c) CaCl_2 central metal atom is: c) $\operatorname{[Fe(CN)_6]^{3-}}$ c) O_2^- interatomic spacing is 1Å. To c) 15 dius? c) Fe, Co, Ni, Cu	ion of $d) {* \choose \sigma_{2S}}^{1} (\pi_{2p_{y}})^{1}$ $d) CsCl$ $d) [Cr(H_{2}O)_{6}]^{3+}$ $d) O_{2}^{2-}$ $he % ionic character of HBr$ $d) 27$ $d) F, Cl, Br, I$

a) $rac{r_c}{r_a}$	b) $(r_c + r_a)$	c) $\frac{r_a}{r_c}$	d) $\frac{1}{(r_c + r_a)}$	
461. Which contains a coor	rdinate and covalent bond?		3.5.	
a) BaCl ₂	b) NH ₄ Cl	c) HCl	d) H ₂ O	
462. Covalent radius of Li	is 123 pm. The crystal radius	of Li will be:		
a) > 123 pm	b) < 123 pm	c) + 123 pm	$d) = \frac{123}{2} pm$	
	g does not contain coordinat			
a) BH ₄	b) NH ₄ ⁺	c) CO_3^{2-}	d) H ₃ O ⁺	
464. The bond order of C ₂ ⁺				
a) 1	b) 2	c) 3/2	d) 1/2	
465. With increasing bond	지도 보고 있는 것이 가는 가는 것이 있다. 그런			
a) Increases	b) Decreases	c) Remains unaltered	d) None of these	
466. Molecular orbitals the				
a) Werner	b) Kossel	c) Moseley	d) Mullikan	
467. The isoelectronic pair		N 2007/2015		
a) Cl ₂ O, ICl ₂	b) Cl ₂ , ClO ₂	c) IF_2^+, I_3^-	d) ClO_2^- , ClF_2^+	
468. The compound 1,2-bu			120	
	oridised carbon atoms		b) Only sp^2 hybridised carbon atoms	
c) Only sp hybridised		d) Only sp and sp^2 hybra	ridised carbon atoms	
469. The correct order of i		SU 10th of MATER OF NO	(644) (1.154) - 1740)	
	b) $0^{2-} > 0^- > 0^+$	c) $I^- > I > I^+$	d) All of these	
470. The shape of sulphate		8 8 8	100 0 0 0	
a) Square planar	b) Trigonal	c) Trigonal planar	d) Tetrahedral	
471. Molecular shape of SF				
1.53	and 1 lone pair of electrons			
	and 1 lone pair of electrons			
10 14 개발 사람이 있는 경기 10 10 10 10 10 10 10 10 10 10 10 10 10	and 2 lone pairs of electrons	respectively.		
	and 2 lone pairs of electrons			
472. Which of the followin	g is sp^3 hybridised?	respectively.		
472. Which of the followin a) NH ₃	g is sp^3 hybridised? b) BH ₃	respectively. c) PCl ₅	d) AlCl ₃	
472. Which of the followina) NH₃473. Sodium chloride is so	g is sp^3 hybridised?	respectively. c) PCl ₅ zene because	d) AlCl ₃	
472. Which of the followin a) NH_3 473. Sodium chloride is so $\Delta H_{hdydration}$	g is sp^3 hybridised? b) BH_3 luble in water but not in ben	respectively. c) PCl_5 zene because $\Delta H_{ m hdydration}$		
472. Which of the followin a) NH_3 473. Sodium chloride is so $\Delta H_{hdydration}$	g is sp^3 hybridised? b) BH ₃	respectively. c) PCl ₅ zene because		
472. Which of the followin a) NH_3 473. Sodium chloride is so $\Delta H_{hdydration}$	g is sp^3 hybridised? b) BH ₃ luble in water but not in ben _{water} and ΔH _{hdydration}	respectively. c) PCl_5 zene because $\Delta H_{ m hdydration}$	$_{ m ater}$ and $\Delta H_{ m hdydration}$	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\text{hdydration}}$ a) $< \Delta H_{\text{lattice energy in}}$	g is sp^3 hybridised? b) BH ₃ luble in water but not in ben _{water} and ΔH _{hdydration}	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ w}$	$_{ m ater}$ and $\Delta H_{ m hdydration}$	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$	g is sp^3 hybridised? b) BH ₃ luble in water but not in ben water and ΔH _{hdydration} benzene	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ we}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{Hdydration}$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$	g is sp^3 hybridised? b) BH_3 luble in water but not in ben $_{ m water}$ and $_{ m hdydration}$ benzene $_{ m water}$ and $_{ m hdydration}$	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{Hdydration}$ d) $< \Delta H_{lattice\ energy\ in\ we}$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$ $< \Delta H_{\rm lattice\ energy\ in}$	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{ m hdydration}$ benzene water and $\Delta H_{ m hdydration}$ benzene	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{Hdydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$ $< \Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{ m hdydration}$ benzene water and $\Delta H_{ m hdydration}$ benzene the strongest hydrogen bor	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{Hdydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$ anding:	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$ $< \Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H ₂ O ₂ and H ₂ O	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{\rm hdydration}$ benzene water and $\Delta H_{\rm hdydration}$ benzene the strongest hydrogen bor b) HCOOH and CH_3COO	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{ldydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$ and in g: OH c) $CH_3COOH\ and\ CH_3COOH\ and\ CH_3COOH\$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$ $< \Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H ₂ O ₂ and H ₂ O 475. The number of sigma	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{\rm hdydration}$ benzene water and $\Delta H_{\rm hdydration}$ benzene the strongest hydrogen bor b) HCOOH and CH_3COO and pi bonds in 1- butane 3-	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{hdydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$ anding: OH c) $CH_3COOH\ and\ CH_3CO$ yne are:	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene $_{ m conzene}$	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$ $< \Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H ₂ O ₂ and H ₂ O	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{hdydration}$ benzene water and $\Delta H_{hdydration}$ benzene in the strongest hydrogen bon b) HCOOH and CH_3COO and pi bonds in 1- butane 3- b) 6σ and 4π	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{ldydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$ and in g: OH c) $CH_3COOH\ and\ CH_3COOH\ and\ CH_3COOH\$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $<\Delta H_{\rm lattice\ energy\ in}$ $>\Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $=\Delta H_{\rm lattice\ energy\ in}$ $<\Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H ₂ O ₂ and H ₂ O 475. The number of sigmana) 5 σ and 5 π	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{hdydration}$ benzene water and $\Delta H_{hdydration}$ benzene in the strongest hydrogen bon b) HCOOH and CH_3COO and pi bonds in 1- butane 3- b) 6σ and 4π	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{hdydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$ anding: OH c) $CH_3COOH\ and\ CH_3CO$ yne are:	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene $_{ m DO(d)}$ SiH $_4$ and SiCl $_4$ d) 8σ and 2π	
472. Which of the following a) NH $_3$ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $<\Delta H_{\rm lattice\ energy\ in}$ $>\Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $=\Delta H_{\rm lattice\ energy\ in}$ $<\Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H $_2$ O $_2$ and H $_2$ O 475. The number of sigma a) 5 σ and 5 π 476. Which is soluble in war a) AgF	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{\rm hdydration}$ benzene water and $\Delta H_{\rm hdydration}$ benzene in the strongest hydrogen bor b) HCOOH and CH_3COO and pi bonds in 1- butane 3- b) 6σ and 4π ater?	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{Hdydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$ and ing: OH c) $CH_3COOH\ and\ CH_3CO$ yne are: c) $7\sigma\ and\ 3\pi$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene $_{ m conzene}$	
472. Which of the following a) NH $_3$ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $<\Delta H_{\rm lattice\ energy\ in}$ $>\Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $=\Delta H_{\rm lattice\ energy\ in}$ $<\Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H $_2$ O $_2$ and H $_2$ O 475. The number of sigma a) 5 σ and 5 π 476. Which is soluble in war a) AgF	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{hdydration}$ benzene water and $\Delta H_{hdydration}$ benzene n the strongest hydrogen bor b) HCOOH and CH_3COO and pi bonds in 1- butane 3- b) 6σ and 4π ater? b) AgCl	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ be}$ $< \Delta H_{lattice\ energy\ in\ be}$ $\Delta H_{Hdydration}$ d) $< \Delta H_{lattice\ energy\ in\ be}$ $= \Delta H_{lattice\ energy\ in\ be}$ and ing: OH c) $CH_3COOH\ and\ CH_3CO$ yne are: c) $7\sigma\ and\ 3\pi$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene $_{ m DO(d)}$ SiH $_4$ and SiCl $_4$ d) 8σ and 2π d) AgI	
472. Which of the following a) NH $_3$ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $<\Delta H_{\rm lattice\ energy\ in}$ $>\Delta H_{\rm lattice\ energy\ in}$ $<\Delta H_{\rm lattice\ energy\ in}$ $<\Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H $_2$ O $_2$ and H $_2$ O 475. The number of sigma a) 5 σ and 5 π 476. Which is soluble in war a) AgF	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{\rm hdydration}$ benzene water and $\Delta H_{\rm hdydration}$ benzene n the strongest hydrogen bor b) HCOOH and CH_3COC and pi bonds in 1- butane 3- b) 6σ and 4π ater? b) $AgCl$ g compounds has the lowest b) $CaCl_2$	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ we}$ $< \Delta H_{lattice\ energy\ in\ we}$ $\Delta H_{lattice\ energy\ in\ we}$ $= \Delta H_{lattice\ energy\ in\ be}$ and ing: OH c) $CH_3COOH\ and\ CH_3COOH\ and\ CH_3$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene $_{ m DO(d)}$ SiH $_4$ and SiCl $_4$ d) 8σ and 2π	
472. Which of the following a) NH $_3$ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$ $< \Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H $_2$ O $_2$ and H $_2$ O 475. The number of sigma a) 5 σ and 5 π 476. Which is soluble in war a) AgF 477. Which of the following a) CaF $_2$	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{\rm hdydration}$ benzene water and $\Delta H_{\rm hdydration}$ benzene n the strongest hydrogen bor b) HCOOH and CH_3COC and pi bonds in 1- butane 3- b) 6σ and 4π ater? b) $AgCl$ g compounds has the lowest b) $CaCl_2$	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ we}$ $< \Delta H_{lattice\ energy\ in\ we}$ $\Delta H_{lattice\ energy\ in\ we}$ $= \Delta H_{lattice\ energy\ in\ be}$ and ing: OH c) $CH_3COOH\ and\ CH_3COOH\ and\ CH_3$	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene $_{ m DO(d)}$ SiH $_4$ and SiCl $_4$ d) 8σ and 2π d) AgI	
472. Which of the following a) NH ₃ 473. Sodium chloride is so $\Delta H_{\rm hdydration}$ a) $< \Delta H_{\rm lattice\ energy\ in}$ $> \Delta H_{\rm lattice\ energy\ in}$ $\Delta H_{\rm hdydration}$ c) $= \Delta H_{\rm lattice\ energy\ in}$ $< \Delta H_{\rm lattice\ energy\ in}$ 474. The pair likely to form a) H ₂ O ₂ and H ₂ O 475. The number of sigma a) 5 σ and 5 π 476. Which is soluble in war a) AgF 477. Which of the following a) CaF ₂ 478. sp^3 hybridisation is not a) H ₂ O	g is sp^3 hybridised? b) BH_3 luble in water but not in ben water and $\Delta H_{hdydration}$ benzene water and $\Delta H_{hdydration}$ benzene the strongest hydrogen bon b) HCOOH and CH_3COC and pi bonds in 1- butane 3- b) 6σ and 4π ater? b) $AgCl$ g compounds has the lowest b) $CaCl_2$ oot found in	respectively. c) PCl_5 zene because $\Delta H_{hdydration}$ b) $> \Delta H_{lattice\ energy\ in\ We}$ $< \Delta H_{lattice\ energy\ in\ We}$ $\Delta H_{lattice\ energy\ in\ We}$ $= \Delta H_{lattice\ energy\ in\ We}$ and CH_3 c) CH_3	$_{ m ater}$ and $\Delta H_{ m hdydration}$ enzene $_{ m ater}$ and $\Delta H_{ m Hdydration}$ enzene $_{ m DO(d)}$ SiH $_4$ and SiCl $_4$ d) 8σ and 2π d) AgI d) CaI $_2$	

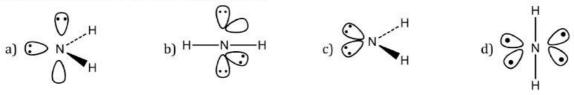
	b) H ₂ Te because of higher molecular weight			
	c) H ₂ S because of hydrogen bonding			
	d) H ₂ Se because of lower molecular weight			
480	480. Which of the following is false?			
	a) Methane molecule is to	etrahedral in shape		
	b) Nickel tetrachloride is	square planar in shape		
	c) P ₂ O ₅ is like two pyram	ids joined at their apices		
	d) Acetylene is non-linear	r		
481	. The pair of elements whi	ch on combination are mos	t likely to form an ionic con	npound is:
	a) Na and Ca	b) K and O ₂	c) O ₂ and Cl ₂	d) Al and I ₂
482	. Among the following the	maximum covalent charact	er is shown by the compou	nd.
	a) FeCl ₂	b) SnCl ₂	c) AlCl ₃	d) MgCl ₂
483	. Dipole-dipole attractive f	orces are strongest betwee	n the molecules of:	
	a) He	b) CH ₄	c) CO ₂	d) H ₂ O
484			$1 SO_2$ and SO_3 is respectivel	58
	a) sp, sp^2	b) sp^2 , sp^2	c) sp^2 , sp^3	d) sp, sp^3
485	. The electrons used in bor	(177)		
	a) Belong to outermost sl			
	b) Belong to penultimate		2.72	
		nell and sometimes penulti		
		shell and sometimes to out		electronic)
486			correct increasing bond or	der
	a) $0_2 < 0_2^{2-} < 0_2^{2+} < 0_2^{+}$		b) $0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$	
	c) $O_2^2 - < O_2 < O_2^+ < O_2^2$		d) $0_2^+ < 0_2^{2-} < 0_2 < 0_2^{2+}$	
407	2 2 2	1	, , , , , ,	
487	. In a homonuclear molecu		et of orbitals is degenerate?	
	a) $\sigma 2s$ and $\sigma 1s$	b) $\pi 2 p_x$ and $\pi 2 p_y$	c) $\pi 2p_x$ and $\sigma 2p_z$	d) $\sigma 2 p_z$ and $\tilde{\pi} 2 p_x$
488	. The electronegativity ord	er of O, F, Cl and Br is:		
	a) $F > 0 > Cl > Br$		c) $Br > Cl > F > 0$	d) $F < Cl < Br < 0$
489	. Solid NaCl is a bad condu	ctor of electricity because:		
	a) In solid NaCl there are	no ions		
	b) Solid NaCl is covalent			
	c) In solid NaCl there is n	o velocity of ions		
	d) In solid NaCl there are	no electrons		
490	. The number of lone pairs	is same in PCl ₃ and:		
	a) BCl ₃	b) NCl ₃	c) CCl ₄	d) PCl ₅
491	491. CaO and NaCl have the same crystal structure and approximately the same ionic radii. If U is the lattice			
	energy of NaCl, the appro	ximate lattice of CaO is		
	a) $\frac{U}{2}$	b) <i>U</i>	c) 2 <i>U</i>	d) 4 <i>U</i>
400	4	9.53	εδ	-9
492		CH = CH ₂ , the hybridisation of $p^3 - sp^3$		1) 3
400	a) $sp^2 - sp$, ,	c) $sp^2 - sp^2$	d) $sp^3 - sp$
493	. Shape and hybridisation			
	a) Trigonal bipyramidal,	sp°a		
	b) Sea-saw, sp^3d	J 2		
	c) Square pyramidal, sp^3			
101	d) Pentagonal pyramidal,		1 2	
494. Which of the following set of properties belong to PCl ₅ ?				

a) H₂O because of hydrogen bonding

	a) sp^3 , tetrahedral, 4 va	(47)		
	b) $sp^3 d$, trigonal bipyra			
	c) $sp^3 d^2$, octahedral, 6			
	d) $sp^3 d$, square planar,			
49		ionic charge is 4.8×10^{-1}	0^{-10} esu. If the interionic dis	tance is 1 Å unit, then the dipole
	moment is			
	a) 0.48 debye	b) 4.18 debye	c) 4.8 debye	d) 41.8 debye
49			ms in ethylene consists of:	
	a) Two sigma-bonds at	75 C 175 C 1	ner	
	b) One sigma-bond and			
	c) Two pi-bonds at righ	TOTAL TANKS HELD (1987) - 10 HOLD (1987)		
- 4.0	d) Two pi-bonds at an a		er	
49	7. The state of hybridisation			
	a) sp^3 and has a lone pa			
	b) sp^2 and has tetrahed			
	c) sp^3d and has a trigor		ire	
40	d) sp^3d^2 and has an oct		de aras as as as as as as as	
49		7).	electrons are respectively:	4) 2 0
40	a) 2, 6	b) 2, 8	c) 2, 10	d) 2, 9
47	 In which pair, the first a a) N, F 	b) Cl ⁻ , Cl	c) O, S	d) Fe ²⁺ , Fe ³⁺
50			t a molecule of water can ha	Desired Control of Con
30	a) 1	b) 2	c) 3	d) 4
50	1. The isoelectronic specie			u) 4
50	I—CH ₃ ; II—NH ₂ ; III—N		arci	
	a) I, II, III	ь) II, III, IV	c) I, II, IV	d) II, I
50	2. Dipole moment is exhib		c) ,,,	3, 3, 5
200700	a) 1, 4-dichlorobenzene			
	b) 1, 2-dichlorobenzene			
	c) Trans- 1, 2-dichloroe			
	d) Trans-1, 2-dichloro-	2-butene		
50	3. In a multi-electron aton		rbital is:	
	a) Less than that of 2s-o	orbital		
	b) More than that of 2s-	orbital		
	c) Equal to that of 2s-or	bital		
	d) Double that of 2s-orb	oital		
50	4. In which molecule the c	entral atom does not u	se sp^3 -hybrid orbitals in its	bonding?
	a) NH ₂	b) BeF ₃	c) SO ₂ Cl ₂	d) SO ₄ ²⁻
50	5. RbO ₂ is			
	a) Peroxide and parama	ignetic	b) Peroxide and dian	nagnetic
	c) Superoxide and para		d) Superoxide and d	iamagnetic
50	6. Ionization energy of nit		gen because:	
	a) Nucleus has more att			
	b) Half-filled <i>p</i> -orbitals			
	c) Nitrogen atom is sma			
112530	d) More penetration eff			202 YEAR DAY 30 20
50	man and the first of the second s	. Note that the first of the fi	그리 아이들 아이들 아이들이 되었다면 하는 것이 없는 사람들이 되었다.	cid are due to itsstructure
	a) Simple ionic	b) Cubic	c) Bipolar ionic	d) hexagonal
50	8. Which of the following			D IIIIO
	a) SO ₂	b) H ₂ SO ₃	c) HNO ₂	d) HNO ₃

509. Which of the following sequence regarding ionisat	ion potential of coinage me	tal is correct:	
a) $Cu > Ag > Au$ b) $Cu < Ag < Au$	c) Cu > Ag < Au	d) Ag > Cu < Au	
510. Which, molecule has zero dipole moment?		, ,	
a) HBr b) AgI	c) PbSO ₄	d) H ₂ O	
511. BCl ₃ is a planar molecule, while NCl ₃ is pyramidal,	, because		
a) N – Cl bond is more covalent than B – Cl bond			
b) Nitrogen atom is smaller than boron atom			
c) B - Cl bond is more polar than N - Cl bond			
d) BCl3 has no lone pair of electrons but NCl3 has a	a lone pair of electrons		
512. Hybridisation of the underline atom changes in			
a) AlH ₃ changes to AlH ₄	b) H ₂ O changes to H ₃ O+	5	
c) NH ₃ changes to NH ₄ ⁺	d) In all cases		
513. Which molecule has hydrogen bonding			
a) CH ₄ b) CH ₃ COOH	c) GeH ₄	d) H ₂ Te	
514. The energy released when a neutral gaseous atom	3 (3)		
a) Ionization energy b) Solvation energy	c) Electronegativity	d) Electron affinity	
515. In NO ₃ ion, number of bond pair and lone pair elec	ctrons are respectively:		
a) 2, 2 b) 3, 1	c) 1, 3	d) 4, 8	
516. Which has sp^2 -hybridisation?			
a) CO ₂ b) SO ₂	c) N ₂ O	d) CO	
517. A sp^3 -hybrid orbital contains:			
a) 1/4 s-character b) 1/2 s-character	c) 2/3 s-character	d) 3/4 s-character	
518. In the formation of NO ⁺ from NO, the electron is re	emoved from		
a) a σ orbital b) a π orbital	c) $a\sigma^*$ orbital	d) a π^* orbital	
519. The decreasing order of the second ionization ene	rgy of K, Ca and Ba is:		
a) K > Ca > Ba b) Ca > Ba > K	c) Ba > K > Ca	d) K > Ba > Ca	
520. The value of n in the molecular formula $Be_nAI_2Si_6$	0 ₁₈ is		
a) 1 b) 2	c) 3	d) 4	
521. Compound X is anhydride of sulphuric acid. The new	umber of σ bonds and the n	umber of π - bonds present in	
Xare, respectively.			
a) 3, 3 b) 4, 2	c) 2, 4	d) 4, 3	
522. OF ₂ is:			
a) Linear molecule and sp -hybridized			
b) Tetrahedral molecule and sp^3 -hybridized			
c) Bent molecule and sp^3 -hybridized			
d) None of the above			
523. Which is not true in case of ionic bond?			
a) It is linear bond			
b) It is 100% ionic	01 (c) (188 00)		
c) It is formed between two atoms with large elec-	tronegativity difference		
d) None of the above			
524. Which of the following are possible resonating str	ucture of N ₂ O?		
$H \stackrel{\text{I}}{\longrightarrow} N \stackrel{\text{I}}{\longrightarrow} N \stackrel{\text{I}}{\longrightarrow} 0$			
,			
1			
:N=N-0: N-0-N			
III IV			
	a) I II I III	d) All of the	
a) I and II 525 The number of a and a bondain a malecula of as	c) I, II and III	d) All of these	
525. The number of σ and π – bonds in a molecule of a	reconstrue are respectively		

a) 2, 5	b) 3, 4	c) 4, 3	d) 5, 2	
526. Strongest hydrogen bo	2000 BUNGS (1000 BUNGS)			
a) OF	b) sO	c) OS	d) FF	
527. In the cyanide ion, the	formal negative charge is on	•		
a) C				
b) N				
c) Both C and N				
d) Resonate between 0	and N			
528. The trigonal bipyramic	dal geometry results from the	e hybridisation		
a) dsp^3 or sp^3d	b) dsp^2 or sp^2d	c) d^2sp^3 or sp^3d^2	d) d^3p^2 or d^2p^3	
529. Which one of the follow	wing molecules has the small	est bond angle?		
a) NH ₃	b) PH ₃	c) H ₂ O	d) H ₂ Se	
530.	-			
	ngle in H ₂ O is 104.5. This fac	(5)		
	tron pair repulsion (VSEP	R)b) Molecular orbital theo	ory	
theory	190 9	\$2,000 TO 000,000 000,000		
c) Presence of hydroge	en bond		ference between hydrogen	
		and oxygen atoms		
	from the list given below tha		explained by the same	
	Ils , NO_2^- , NO_3^- , NH_2^- , NH_4^+ , SCN			
a) NO ₂ and NH ₂	b) NO_2^- and NO_3^-	c) NH ₄ and NO ₃	d) SCN ⁻ and NH ₂	
532. Which of the following	is non – linear molecule?			
a) SO ₃	b) CO ₂	c) CS ₂	d) BeCl ₂	
533. Which contains both co	ovalent and ionic bonds?			
a) CCl ₄	b) KCN	c) CaCl ₂	d) H ₂ O	
534. In the formation of Na	Cl by combination of Na and	CI:		
a) Sodium and chloring	e both lose electrons			
b) Sodium and chloring	e both gain electrons			
c) Sodium loses but ch	lorine gains electrons			
d) Sodium gains but ch	ilorine loses electrons			
535. Which of the following	has linear structure?			
a) CCl ₄	b) C ₂ H ₄	c) C_2H_2	d) SO ₂	
536. A molecule (X) has (i) four sigma bonds formed b	y the overlap of sp^2 and s	orbitals (ii) one sigma bond	
	formed by sp^2 and sp^2 orbitals and (iii) one π bond formed by p_x and p_z orbitals. Which of the following is			
X?	8 8			
a) C ₂ H ₆	b) C ₂ H ₃ Cl	c) C ₂ H ₂ Cl ₂	d) C ₂ H ₄	
	energy would be associated v			
a) $1s^2$, $2s^22p^6$, $3s^1$	b) $1s^2$, $2s^22p^5$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^6$, $3s^2$	
538. Which is correct in the	5500			
	0.99Å, while that of Cl ⁺ ion i	s 1.54 Å		
	0.99 Å, while that of Na aton			
	m is 0.95 Å, while that of Cl			
	s 0.95 Å, while that of Na ⁺ io			
539. How many unpaired el		11.13.1.171		
a) 1	b) 2	c) 3	d) 4	
7.52	wing compounds has the sma			
a) SO ₂	b) OH ₂	c) SH ₂	d) NH ₃	
541. Which of the following		C) 3112	uj 14113	
가는 1 M Point (C.) 그는 이 이 분들으로 보고 있는 데 이 PP (C.) 이 보고 있는 데 이 모든 다 보고 있다. 이 프로그램 (C.) 그는 이 프	(1) 40 10 10 10 10 10 10 10 10 10 10 10 10 10	a) N. O	4) NO	
a) N ₂ O	b) NO ₂	c) N_2O_5	d) NO	


542. The electronic configuration of four elements L, P, Q and R are given in brackets $L(1s^2, 2s^2, 2p^4), P(1s^2, 2s^2, 2p^6, 3s^1), Q(1s^2, 2s^2, 2p^6, 3s^2, 3p^5), R(1s^2, 2s^2, 2p^6, 3s^2)$ The formula of ionic compounds that can be formed between these elements are d) LP, R_2L , P_2Q , and RQa) L_2p , RL, PQ and R_2Q b) LP, RL, PQ and RQc) P_2L , RL, PQ and RQ_2 543. In which of the following ionisation processes, the bond order has increased and the magnetic behaviour has changed? c) $0_2 \to 0_2^+$ d) $N_2 \rightarrow N_2^+$ b) NO \rightarrow NO⁺ a) $C_2 \rightarrow C_2^+$ 544. The size of ionic species is correctly given in the order: a) $Cl^{7+} > Si^{4+} > Mg^{2+} > Na^+$ b) $Na^+ > Mg^{2+} > Si^{4+} > Cl^{7+}$ c) $Na^+ > Mg^{2+} > Cl^{7+} > Si^{4+}$ d) $Cl^{7+} > Na^{+} > Mg^{2+} > Si^{4+}$ 545. Which of the following has the minimum bond length? d) 0^{2} b) 05 a) 0_2 546. In acetylene molecule, between the carbon atoms there are a) Three pi bonds b) One sigma and two pi bonds c) Two sigma and one pi bonds d) Three sigma bonds 547. The ionic radii of N^{3-} , O^{2-} and F^{-} are respectively given by: a) 1.36, 1.40, 1.71 b) 1.36, 1.71, 1.40 c) 1.71, 1.40, 1.36 d) 1.71, 1.36, 1.40 548. Bond order of 1.5 is shown by: c) 0_{2}^{+} d) 0_{2}^{-} 549. In which of the process, the bond order increases and magnetic behaviour changes? d) $0_2 \to 0_2^+$ a) $N_2 \rightarrow N_2^+$ b) $C_2 \rightarrow C_2^+$ c) NO \rightarrow NO⁺ 550. Which involves a bond forming process? a) Stretching rubber b) Dissolution of sugar in water c) Rusting of iron d) Emission of γ-rays by radioactive iron 551. Which is paramagnetic? c) Cl₂O a) Cl_2O_6 b) Cl₂O₇ d) ClO₂ 552. Which one of the following pairs of molecules will have permanent dipole moments for both members? b) NO₂ and CO₂ c) NO_2 and O_3 d) SiF4 and CO2 a) SiF₄ and NO₂ 553. The state of hybridization of boron and oxygen atom in boric acid (H₃BO₃) is respectively: a) sp^3 , sp^3 b) sp^2 , sp^3 c) sp^3 , sp^2 d) sp^2 , sp^2 554. The correct order towards bond angle is b) $sp < sp^2 < sp^3$ c) $sp < sp^3 < sp^2$ d) $sp^2 < sp^3 < sp$ a) $sp^3 < sp^2 < sp$ 555. Which orbital is used by oxygen atom to form a sigma bond with other oxyen atom in O2 molecule? c) sp³- hybrid orbital a) Pure *p*-orbital b) sp^2 -hybrid orbital d) *sp*- hybrid orbital 556. Which of the following is a linear molecule? b) H₂O c) SO₂ d) CH₄

a) BeCl₂

557. Which involves breaking of covalent bond?

a) Boiling H₂S b) Melting KCN c) Melting SiO₂ d) Boiling CF4

558. For $\overline{N}H_2$, the best three-dimensional view is

559. For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state will be there in which of the following order?


```
a) Cr > Mn > Co > Fe
     b) Mn > Fe > Cr > Co
     c) Fe > Mn > Co > Cr
     d) ^{\text{Co}} > \text{Mn} > \text{Fe} > \text{Cr} (At. no. ^{\text{Cr}} = 24, ^{\text{Mn}} = 25, ^{\text{Fe}} = 26, ^{\text{Co}} = 27)
560. In PO_4^{3-}, the formal charge on each on each oxygen atom and the P – O bond order respectively are
     a) -0.75, 0.6
                                  b) -0.75, 1.0
                                                                c) -0.75, 1.25
                                                                                              d) -3.1.25
561. An element X has 3 electrons in p-orbitals and also belongs to III period. Its molecular formula should be:
                                  b) X_2
     a) X
                                                                c) X4
                                                                                              d) X_5
562. Elements having six electrons in its outermost orbit generally form:
                                  b) Negative ion
                                                                                             d) Zwitter ion
     a) Complex ion
                                                                c) Positive ion
563. Oxygen is divalent, but sulphur exhibits variable valency of 2, 4 and 6, because:

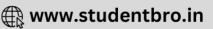
    a) Sulphur is less electronegative than oxygen

     b) Sulphur is bigger atom than oxygen
     c) Ionisation potential of sulphur is more than oxygen
     d) Of the presence of d-orbitals in sulphur
564. Of the following sets which one does not contain isoelectronic species?
                                  b) SO_3^{2-}, CO_3^{2-}, NO_3^{-}
     a) BO_3^{3-}, CO_3^{2-}, NO_3^{-}
                                                                c) CN^-, N_2, C_2^{2-}
                                                                                             d) PO_4^{3-}, SO_4^{2-}, CIO_4^{-}
565. In which of the following, unpaired electrons are present?
     KO_2, AlO_2^-, BaO_2, NO_2^+
     a) NO<sub>2</sub>, BaO<sub>2</sub>
                                                                c) Only KO2
                                                                                              d) Only BaO2
                                  b) KO_2, AlO_2
566. Which transition involves maximum amount of energy?
     a) M^{-}(g) \rightarrow M(g) + e
     b) M^{-}(g) \to M^{+}(g) + 2e
     c) M^{+}(g) \to M^{2+}(g) + e
     d) M^{2+}(g) \to M^{3+}(g) + e
567. What is the nature of the bond between B and O in (C_2H_5)_2OBH_3?
     a) Covalent
                                                                b) Coordinate covalent
     c) Ionic bond
                                                                d) Banana shaped bond
568. Which does not use sp^3-hybrid orbitals in its bonding?
                                                                c) NH<sub>4</sub><sup>+</sup>
     a) BeF3
                                  b) OH<sub>3</sub>+
                                                                                              d) NF<sub>3</sub>
569. Hybridisation of C2and C3 of
     H_3C - CH = C = CH - CH_3 are
                                                                c) sp^2, sp^2
     a) sp, sp^3
                                  b) sp^2, sp
                                                                                              d) sp, sp
570. Maximum covalence of an atom of an element is equal to:
     a) Number of unpaired electrons in the s-and p-orbitals of valency shell
     b) Number of unpaired electrons in the p-orbitals of valency shell
     c) Total number of electrons in the s-and p-orbitals of valency shell
     d) Total number of electrons in the p-orbitals of valency shell
571. Which main group elements have a different number of outermost electrons than their group number?
     a) Alkali metals
                                  b) Noble gases
                                                                c) Halogens
                                                                                              d) None of these
572. The forces present in the crystals of naphthalene are:
     a) Van der Waals' forces b) Electrostatic forces
                                                                c) Hydrogen bonding
                                                                                             d) None of these
573. Which does not show inert pair effect?
     a) Al
                                  b) Sn
                                                                c) Pb
                                                                                              d) Thallium
574. The electronic theory of bonding was proposed by
                                                                c) Bronsted
                                                                                              d) Mullikan
     a) Pauling
                                  b) Lewis
575. The correct order of decreasing first ionization potential is:
     a) C > B > Be > Li
                                  b) C > Be > B > Li
                                                                c) B > C > Be > Li
                                                                                              d) Be > Li > B > C
576. The hybridisation of orbitals of N atom in NO<sub>3</sub>, NO<sub>2</sub>, and NH<sub>4</sub> are respectively
```


a) sp, sp^2, sp^3	b) sp^2 , sp , sp^3	c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp
577. Which of the following is	s more ionic?		
a) NaCl	b) KCl	c) MgCl ₂	d) CaCl ₂
578. The species showing $p\pi$	$d\pi$ overlapping is:		
a) NO ₃	b) PO ₄ ³⁻	c) CO ₃ ²⁻	d) NO ₂
579. H ₂ O has a net dipole mo	ment, while BeF ₂ has zero d	lipole moment, because:	
a) H ₂ O molecule as linea	r while BeF ₂ is bent		
b) BeF ₂ molecule is linea	ar, while H ₂ O is bent		
c) Fluorine is more elect	ronegative than oxygen		
d) Be is more electroneg	ative than oxygen		
580. Among the following wh	ich is the strongest oxidisin	g agent?	
a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂
581. Which of the following r	nolecule in its valence shell	has three bond pairs of ele	ectrons and one lone pair of
electrons?			
a) NH ₃	b) H ₂ O	c) BF ₃	d) CO ₂
582. Which of the following s	tatements is correct?		
a) All carbon to carbon b	onds contain a σ - bond and	d one or more π - bonds	
b) All carbon to hydroge	n bonds are π - bonds		
c) All oxygen to hydroge	n bonds are hydrogen bond	ls	
d) All carbon to hydroge	n bonds are σ - bonds		
583. Which of the following h			
a) C ₂ H ₆	b) C ₂ H ₄	c) BeCl ₂	d) C ₂ H ₂
584. The formation of energy			2 2 2
a) Heisenberg's uncertai		b) Bohr's theory	
c) Ohm's law	* *	d) Rutherford's atomic m	odel
585. Which of the following c	onfiguration is associated w		
a) $1s^2$, $2s^22p^2$	b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$, $3s^2$	d) $1s^2$, $2s^22p^1$
586. The predominent interm			3
a) Dipole-induced dipole			
b) Dipole-dipole interact			
c) Hydrogen bond intera			
d) Dispersion interaction			
587. Correct order of bond le			
a) $CO_3^{2-} > CO_2 > CO$		b) $CO_2 > CO > CO_3^{2-}$	
c) $CO > CO_2 > CO_3^{2-}$		d) None of these	
588. Which of the following n	nolecules has pyramidal sha	The state of the s	
a) PCl ₃	b) SO ₃	c) CO ₃ ²⁻	d) NO ₃
589. The molecular electronic		,3	3
- Notae in 1997, in the notae the colored species in the colored species is the colored species in the colored spe	schedung auch en St iffater ab mat in de Productule di Amer ica d es tat	c) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2s^2$	d) None of the above
a) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2p$	2 b) $KK\sigma 2S^{2}$	c) $\sigma ls^2 \sigma ls^2 \sigma 02s^2 \sigma 2s^2$,
590. The maximum number of	of 90° angles between bond	pair-bond pair of electrons	is observed in
a) dsp^3 hybridisation	uk - Politikano - 1994 i 199 4 ili vuo pirkus 1990 puoti 1996 ilines 1996 ilines 1996 ilines 1996 ilines 1996 ili	b) $sp^3 d$ hybridization	
c) dsp^2 hybridisation		d) $sp^3 d^2$ hybridisation	
591. In which of the following	g arrangement the order is r		perty indicated against it?
a) Increasing size : Al ³⁺			
b) Increasing $IE_1: B < C$			
c) Increasing $EA_1: I < E$			
d) Increasing metallic ra			
592. Most covalent halide of a			
a) AlCl ₃	b) AlI ₃	c) AlBr ₃	d) AlF ₃
,3			

593. The bond order of individual carbon-carbon bonds in benzene is: a) One b) Two c) Between 1 and 2 d) One and two alternately 594. In pyrophosphoric acid, $H_4P_2O_7$, number of σ and $d\pi - p\pi$ bonds are respectively c) 12 and zero a) 8 and 2 b) 6 and 2 d) 12 and 2 595. The percentage s - character of the hybrid orbitals in methane, ethene and ethyne are respectively a) 25, 33, 50 b) 25, 50, 75 c) 50, 75, 100 d) 10, 20, 40 596. The types of bonds present in CuSO₄ · 5H₂O are only a) Electrovalent and covalent b) Electrovalent and co-ordinate c) Electrovalent, covalent and co- ordinate covalent d) Covalent and co-ordinate covalent 597. Which pair represents isostructural species? c) SO_4^{2-} and BF_4^{-} d) NH2 and BeF2 a) CH₃ amd CH₃⁺ b) NH₄ and NH₃ 598. In which of the following species, all the three types of hybrid carbons are present? a) $CH_2 = C = CH_2$ b) $CH_3 - CH = CH - CH_2^+$ c) $CH_3 - C \equiv C - CH_2^+$ d) $CH_3 - CH = CH - CH_2^-$ 599. Which statement is not correct? a) Double bond is shorter than a single bond. b) Sigma bond is weaker than π -bond. c) Double bond is stronger than a sigma bond. d) Covalent bond is stronger than hydrogen bond. 600. The pair having similar geometry is: a) BF₃, NH₃ b) BF₃, AlF₃ c) BeF2, H2O d) BCl3, PCl3 601. Which of the following is largest? b) S2c) Na+ 602. The AsF₅ molecule is trigonal bipyramidal. The hybrid orbitals used by the As atoms for bonding are a) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$ b) d_{xy} , s, p_x , p_y , p_z c) $s, p_x, p_y, p_z, d_{z^2}$ d) $d_{x^2-y^2}$, s, p_x , p_y 603. Consider the following halogen containing compounds (A) CHCl₃ (B) CCl₄ (C) CH₂Cl₂ (D) CH₃Cl (E) The compounds with a net zero dipole moment are a) B and E only b) Conly c) C and D only d) A and D only 604. Alkali metals in each period have: a) Largest size b) Lowest IE c) Highest IE d) Highest electronegativity 605. In a regular octahedral molecule, MX_6 the number of X - M - X bonds at 180° is a) Three b) Two c) Six d) Four 606. Valency means: a) Combining capacity of an element b) Atomicity of an element

c) Oxidation number of an element



d) None of the above 607. Which does not form two or more chlorides? b) Hg c) Cu d) Fe 608. Which has the largest first ionisation energy? b) Na c) K d) Rb 609. Polarization of electrons in acrolein may be written as: a) $\stackrel{\circ}{\text{CH}_2} = \text{CH} - \stackrel{\circ}{\text{CH}_2} = \text{CH} - \text{CH} = O$ b) $\stackrel{\circ}{\text{CH}_2} = \text{CH} - \text{CH} = O$ c) $\stackrel{\circ}{\text{CH}_2} = \stackrel{\circ}{\text{CH}} - \text{CH} = O$ d) $\stackrel{\circ}{\text{CH}_2} = \text{CH} - \text{CH} = O$ 610. Which bond has the highest bond energy? a) Coordinate bond b) Sigma bond c) Multiple bond d) Polar covalent bond 611. In which of the following molecules the van der Waals' forces is likely to be the most important in determining the melting and boiling point? a) CO b) H2S c) Br₂ d) HCl 612. The higher values of specific heat of water in comparison to other liquids is due to: a) High dielectric constant b) Polarity c) H-bonding d) None of the above 613. Which contains both polar and non-polar covalent bonds? b) HCN c) H₂O₂ d) CH₄ 614. How many - bonds are present in naphthalene? b) 5 c) 6 d) 7 615. If the electron pair forming a bond between two atoms A and B is not in the centre, then the bond is a) Polar bond b) Single bond c) π -bond d) Non-polar bond 616. Which of the following species in non-linear? d) ClO₂ a) ICl₂ b) I₃ c) N_3^- 617. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero c) 3 d) 1 618. Which one is the strongest bond? a) Cl-F b) F-F c) Br-F d) Br-Cl 619. Which of the following compound has maximum volatility? COOH COOH 620. In the following electron-dot structure, calculate the formal charge from left to right nitrogen atom; N=N=N a) -1, -1, +1 b) -1, +1,-1 c) +1, -1, -1d) +1, -1, +1621. Hybridisation shown by carbon and oxygen of - OH group in phenol are respectively a) sp^2, sp^2 b) sp^3 , sp^3 c) sp, sp^2 622. The molecule which has pyramidal shape is:

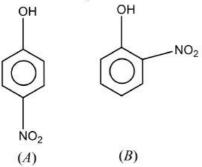
c) CO₃²⁻

d) NO_3^-

b) SO₃

a) PCl₃

- 623. The correct increasing bond angles order is:
 - a) $BF_3 < NF_3 < PF_3 < ClF_3$
 - b) $ClF_3 < PF_3 < NF_3 < BF_3$
 - c) $BF_3 \approx NF_3 < PF_3 < ClF_3$
 - d) $BF_3 < NF_3 < PF_3 > ClF_3$
- 624. Van der Waals' forces are applied to:
 - a) Inert gases only
 - b) Rare gases only
 - c) Mixture of gases
 - d) Elementary gases only
- 625. Which bond angle results in the minimum dipole moment for the triatomic molecule XY_2 shown below?
 - a) 90°


- b) 120°
- c) 150°
- d) 180°

- 626. Which shows the least dipole moment?
 - a) CHCl3
- b) CH₃CH₂OH
- c) CH₃COCH₃
- d) CCl4

- 627. Which force is strongest?
 - a) Dipole-dipole forces
 - b) Ion-ion forces
 - c) Ion-dipole forces
 - d) Ion-induced dipole forces
- 628. Which molecule has linear structure?

- b) H₂O
- c) SO₂

- d) H₂O₂
- 629. Out of the compounds below the vapour pressure of (B) at a particular temperature is

a) Higher than that of (A)

- b) lower than that of (A)
- c) Higher or lower than (A), depending on the size ofd) Same as that of (A)
- 630. Which ion has a higher polarizing power?
- b) Al3+
- c) Ca2+
- 631. Which of the following represent the given mode of hybridisation $sp^2 sp^2 sp sp$ from left to right?
 - a) $H_2C = CH C \equiv CN$

b) $HC \equiv C - CH_2 - C \equiv CH$

c) $H_2C = C = CH_2$

- d) $HC = C CH_2 C = CH$
- 632. The solubility of KCl is relatively more in (where D is dielectric constant):
 - a) $C_6H_6(D=0)$
- b) $(CH_3)_2CO(D = 2)$
- c) $CH_3OH(D = 32)$
- d) $CCl_4(D=0)$
- 633. Elements have electronegativities 1.2 and 3.0, bond formed between them would be
- b) Covalent
- c) Co-ordinate
- d) metallic
- 634. Among the following, the pair in which the two species are not isostructural, is
- a) SiF₄ and SF₄
- b) 10^{-3} and XeO_{3}
- c) BH₄ and NH₄⁺
- d) PF₆ and SF₆

- 635. Which has zero dipole moment?
 - a) CIF

- b) PCl₃
- c) SiF₄
- d) CFCl₃
- 636. Which of the following molecules is covalent and shows expanded octet in its formation?
 - a) HF

- b) NF₃
- c) BF₃

d) ClF₃

205 MILL C.I C.II			
637. Which one of the foll	owing is a correct set?	13 701 2	
a) H_2O , sp^3 , angular		b) $BCl_3 sp^3$, angular	
c) NH ₄ , dsp^2 , square		d) CH ₄ , dsp ² , tetrahedra	L
	alogens increases from F to I?		
a) Electronegativity			
b) First ionization er	1 7 7		
c) Bond length in the			
d) None of the above			
	bonds in acetylene molecule is		
a) One	b) Two	c) Three	d) Five
640. The number of antib	onding electron pairs in O_2^{2-} r	nolecular ion on the basis (of molecular orbital theory is
(Atomic number of C) is 18.)		
a) 5	b) 4	c) 3	d) 2
641. Variable valency is c	haracteristic of:		
a) Noble gases			
b) Alkali metals			
c) Transition metals			
d) Non-metallic elem	ents		
642. In which molecule al	l atoms are coplanar?		
a) CH ₄	b) BF ₃	c) PF ₃	d) NH ₃
643. During change of O2	to 0_2^- ion, the electron adds on	which one of the following	g orbitals?
a) π* orbital	b) π orbital	c) σ* orbital	d) σ orbital
644. Bond energy of cova	lent O—H bond in water is:		
a) Greater than bond	l energy of hydrogen bond		
b) Equal to bond ene	rgy of hydrogen bond		
c) Less than bond en	ergy of hydrogen bond		
d) None of the above			
645. Which one of the foll	owing has a coordinate bond?		
a) NH₄Cl	b) AlCl ₃	c) NaCl	d) Cl ₂
646. Which carbon is mor	e electronegative?	Total Commence Control	Hallen Control
a) sp^3 hybridised can	rbon		
b) sp - hybridised ca			
c) sp ² hybridised car			
	spective of its hybrid state		
	O_2 and H_2O , the non-linear mo	lecules are:	
a) BeCl ₂ and H ₂ O	b) BeCl ₂ and CO ₂	c) NH ₃ and H ₂ O	d) NH ₃ and CO ₂
648. Paramagnetism is ex		SELD THE CONTROL OF T	and a conservation of the
a) Not attracted into			
b) Containing only pa			
c) Carrying a positiv			
d) Containing unpair			
	the largest dipole moment?		
a) HF	b) HCl	c) HBr	d) HI
0.53	ttractive forces vary in the ord		
a) Water < alcohol <			
b) Water > alcohol >			
c) Alcohol > water <			
d) Ether > water > a			
5	ng species has a linear shape?		
a) NO ₂ ⁺	b) 0 ₃	c) NO ₂	d) SO ₂
	-1 -3	(A)	7 - 2

652. The 6	electronic configurat	ion of 4 elements K, L, M ar	nd N are,	
K =	$1s^2$, $2s^22p^1$	$L = 1s^2$, $2s^22p^6$		
M =	$1s^2$, $2s^22p^4$	$N = 1s^2$, $2s^22p^3$		
	The particulation of the property of the particular and the particular	orm a diatomic molecule w	ith double bond is:	
a) <i>K</i>		b) <i>L</i>	c) M	d) N
100	h of the following w	ill provide the most efficien		
a) s -		b) $s-p$	c) $sp^2 - sp^2$	d) $sp - sp$
		of C_2 , C_3 , C_5 and C_6 of the l		52.5F 5F
	CH ₃ CI		2	
	Ĭ 1	2		
CH ₃	$-{}_{6}C - {}_{5}CH = CH - C$	-C≡CH		
7	AGE: 07995	2 1		
	CH ₃			
	the following sequen			
a) <i>sp</i>	, sp^2 , sp^3 and sp^2	b) sp, sp^3, sp^2 and sp^3	c) sp^3 , sp^2 , sp^2 and sp	d) sp, sp^2, sp^2 and sp^3
655. Four	diatomic species are	e listed below in different se	equences. Which of these re	epresents the correct order
of the	eir increasing bond o	order?		
a) N($0 < C_2^{2-} < O_2^{-} < He_2^{+}$			
b) C ₂	$^{-}$ < He $_{2}^{+}$ < NO < O $_{2}^{-}$	24		
c) He	$e_2^+ < 0_2^- < NO < C_2^{2-}$	-		
d) 05	$< NO < C_2^{2-} < He_2^{+}$			
33 7		e longest bond length?		
a) No	70	b) 0 ₂	c) O ₂ ⁺	d) N ₂ ⁺
657. The p	oair of molecules for	ming strongest hydrogen b	onds are	and a second
, 1000000000000000000000000000000000000			$CH_3 - C - CH_3$ and CH	Cl ₃
a) Sil	H ₄ and SiF ₆		b)	
			0	
Н	$-$ C $-$ OH and CH $_3$ $-$	- C - OH		
c)			d) H ₂ O and H ₂	
	 	0		
658. Whic	h one of the followir	ng has not triangular pyram	idal shape?	
a) NI		b) NCl ₃		d) BCl ₃
659. A cov		d between the atoms by the		ntaining:
	ngle electron	· · · · · · · · · · · · · · · · · · ·		
	ired electron			
V-0.300000	ngle electron with pa	arallel spin		
	ngle electron with or	Y = 22 72 x 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		onds required the largest ar	nount of bond energy to di	ssociate the atom
	erned?		3,	
	– H bond in H ₂	b) $0 = 0$ bond in 0_2	c) $N \equiv N \text{ bond in } N_2$	d) $C - C$ bond in C_2H_6
	covalency of nitroger	[전 경기를 발생하는	-) 2	-7
	Control of the second s	3		
a) Ze				
a) Ze b) 3	10			
b) 3	10			
b) 3 c) 4	10			
b) 3 c) 4 d) 5				
b) 3 c) 4 d) 5 662. Whice	h is distilled first?	b) Liquid CO ₂	c) Liquid O2	d) Liquid Na
b) 3 c) 4 d) 5 662. Whice a) Lie	h is distilled first? quid H ₂	b) Liquid CO ₂	c) Liquid O ₂	d) Liquid N ₂
b) 3 c) 4 d) 5 662. Whice a) Lie	h is distilled first? quid H ₂ h one of the followir		12.02	d) Liquid N ₂
b) 3 c) 4 d) 5 662. Whice a) Lie 663. Whice a) H ₂	h is distilled first? quid H_2 h one of the followir $0, sp^3$, angular	ng is a correct set?	b) H_2O, sp^2 , linear	d) Liquid N ₂
b) 3 c) 4 d) 5 662. Whic a) Lic 663. Whic	h is distilled first? quid H ₂ h one of the followir	ng is a correct set?	12.02	d) Liquid N ₂

664. Which is correct order for ele	ectron gain enthalpy?		
a) $S < O < Cl < F$ b)	0 < S < F < Cl	c) $Cl < F < S < 0$	d) $F < Cl < 0 < S$
665. Which is a pyramidal structur	re?		
a) Trimethylamine b)	Methanol	c) Acetylene	d) Water
666. Among the following mixture	es, dipole – dipole as the	major interaction, is prese	nt in
a) Benzene and ethanol		b) Acetonitrile and aceton	e
c) KCl and water		d) Benzene and carbon tet	crachloride
667. In dry ice there are in betw	veen molecules.		
a) Ionic bond b)	Covalent bond	c) Hydrogen bond	d) None of these
668. The dipole moment of o, p and	d m-dichlorobenzene w	rill be in the order	
a) $o > p > m$ b)	p > o > m	c) $m > o > p$	d) $o > m > p$
669. Which formulae does not corn	rectly represents the bo	nding capacity of the atom	involved?
г 1+			
a) $H \longrightarrow H$ b)	F F	O	6 0
a) $ H \longrightarrow H$ b)		c) O←N H	d) $H-C=C$
	ŏ	0/	0
н]			
670. Which has minimum ionic rac	dius?		
	K ⁺	c) Na ⁺	d) F-
671. The bond order is maximum i		97 2 .35000	**************************************
	02+	c) 0 ₂	d) O ₂ ²⁻
672. PF ₃ molecule is:	2	, .	, 2
	Trigonal bipyramidal	c) Tetrahedral	d) Trigonal pyramidal
673. Resonance is due to:			-) 6 [7
a) Delocalization of σ -electron	ns		
b) Delocalization of π-electron			
c) Migration of H atoms			
d) Migration of protons			
674. Which property is commonly	exhibited by a covalent	compound?	
a) High solubility in water		onto consecutive and a consecutive section of the consecutive section of th	
b) Low m.p.			
c) High electrical conductivity	у		
d) High b.p.	7/2		
675. Which of the following is an e	electrovalent linkage?		
a) CH ₄ b)	SiCl ₄	c) MgCl ₂	d) BF ₃
676. The decreasing values of bond	d angles from NH ₃ (106	°) to SbH ₃ (101°) down gr	oup-15 of the periodic
table is due to:			
a) Increasing bp - bp repulsion	on		
b) Increasing p-orbital charac	cter in sp^3		
c) Decreasing lp - bp repulsion	on		
d) Decreasing electronegativi	ity		
677. The shape of ClO ₃ according to	to VSEPR model is:		
a) Planar triangle b)	Pyramidal	c) Tetrahedral	d) Square planar
678. Which metal has a greater ter	ndency to form metal ox	tide?	
a) Cr b)	Fe	c) Al	d) Ca
679. The charge/size ratio of a ca	ition determines its pol	arising power. Which one	of the following sequences
represents the increasing ord			
a) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2-}$		b) $Be^{2+} < K^+ < Ca^{2+} < M$	
c) $K^+ < Ca^{2+} < Mg^{2+} < Be^2$		d) $Ca^{2+} < Mg^{2+} < Be^{2+} <$	

680. A p-block element in which last electron enters into	s-orbitals of valence shell	instead of p -orbital is:
a) As b) Ga	c) No such element exist	d) He
681. How many electron pairs are present in valence she	ell of oxygen in water molec	ule?
a) 4 b) 1	c) 2	d) 3
682. Number of electrons in a the valence orbit of nitrog	en in an ammonia molecule	is
a) 8 b) 5	c) 6	d) 7
683. The number of valency electrons in carbon atom is:		
a) Zero b) 2	c) 6	d) 4
684. The structure of IF ₅ can be best described as	5, 5	 , .
F		d) None of these
E F E	e F e	d) None of these
720	900	
a) $I^{\frac{72}{2}}F$ b) $72^{\circ}I^{\frac{1}{2}}F$	c) _{90°}	
E F	-/()-	
· · · · · · · · · · · · · · · · · · ·	F · F	
685. The relationship between the dissociation energy a	$nd N_2$ and N_2^+ is	
a) dissociation energy of N ₂ = dissociation energy	- 1987 - 1987 - 1987 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 198	
b) dissociation energy of N ₂ can either be lower or		energy of N ₂ ⁺
c) dissociation energy of N ₂ > dissociation energy		2
d) dissociation energy of $N_2^+ >$ dissociation energy		
686. The bond angle in H ₂ S (for H—S—H)is:	2	
a) Same as that of Cl—Be—Cl in BeCl ₂		
b) Greater than H—N—H bond angle in NH ₃		
c) Greater than H—Se—H and less than H—O—H		
d) Same as Cl—Sn— Cl in SnCl ₂		
	udnagan band?	
687. Which one among the following does not have the h		4) 1::4 1101
a) Phenol b) Water	c) Liquid NH ₃	d) Liquid HCl
688. Which of the following molecules/ions does not cor		n o
a) O_2^{2-} b) B_2	c) N ₂ ⁺	d) O ₂
689. The $C - O - H$ bond angle in ethanol is nearly		nee
a) 90 b) 104	c) 120	d) 180
690. Which one of the following does not have sp^2 hybri		
a) Acetone b) Acetic acid	c) Acetonitrile	d) Acetamide
691. Among the following elements Ca, Mg, P and Cl the o	order of increasing atomic r	adius is:
a) $Mg < Ca < Cl < P$ b) $Cl < P < Mg < Ca$	c) $P < Cl < Ca < Mg$	d) $Ca < Mg < P < Cl$
692. Which has a giant covalent structure?		
a) PbO ₂ b) SiO ₂	c) NaCl	d) AlCl ₃
693. Bond angles of NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is in the or	der	
a) $PH_3 > AsH_3 > SbH_3 > NH_3$	b) $SbH_3 > AsH_3 > PH_3 >$	NH ₃
c) $SbH_3 > AsH_3 > NH_3 > PH_3$	d) $NH_3 > PH_3 > AsH_3 >$	
694. Amongst the elements with following electronic con		-
ionization energy?	o ,	,
a) Ne $[3s^23p^1]$ b) Ne $[3s^23p^3]$	c) Ne $[3s^23p^2]$	d) Ar[$3d^{10}4s^24p^3$]
695. Based on VSEPR theory, the number of 90 degree F		.,[]
a) 0 b) 1	c) 2	d) 3
696. Which one of the following elements has lower value		u) 5
a) Mg b) Rb		d) C2
	c) Li	d) Ca
697. The lattice energy order for lithium halide is:		
a) LiF > LiCl > LiBr > LiI		
b) LiCl > LiF > LiBr > LiI		

	c) LiBr > LiCl > LiF > Li			
	d) LiI > LiBr > LiCl > LiF		hiah haa tha waalaat C C	Nhand?
	a) CO	н ₃ соо , со, со ₃ ,нсно w b) со₂	which has the weakest $C - C$ c) CO_3^{2-}	d) CH ₃ COO ⁻
	Peroxide ion	b) CO ₂	c) do ₃	u) c113c00
077.		ed antibonding molecular o	orhitals	
	(ii) is diamagnetic	ed difficulting morecular (or breats	
	(iii) has bond order one			
	(iv) is isoelectronic with r	neon		
	Which one of these is corn			
	a) (ii) and (iii)	b) (i),(ii) and (iv)	c) (i),(ii) and (iii)	d) (i) and (iv)
700.	Which is the weakest amo	ong the following type of bo		(E.1.1851)
	a) Ionic bond	b) Covalent bond	c) Metallic bond	d) Hydrogen bond
701.	In which of the following	pairs of molecules/ions, th	e central atom has sp^2 -hyb	ridization?
	a) NO ₂ and NH ₃	b) BF ₃ and NO ₂	c) NH ₂ and H ₂ O	d) BF ₃ and NH ₂
702.	Bond length decreases wi	th:		
	a) Decrease in size of the	atom		
		of bonds between the ator	ns	
	 c) Decrease in bond order 			
	-	r of bonds between the ato		
		olecules/ ions does not con		
	a) 0 ₂ ²	b) B ₂	c) N ₂ ⁺	d) O ₂
	The structure of IF ₇ is		12 m : 11 : :1	
	a) Square pyramid		b) Trigonal bipyramid	
	c) Octahedral		d) Pentagonal bipyramid	
	The species C_2 a) Has one σ bond and on	o # bond	b) Has both π bonds	
	c) Has both σ bonds	e n bond	d) Does not exist	
	In which of the following	hond angle is mayimum?	uj Does not exist	
	a) NH ₃	b) NH ₄ ⁺	c) PCl ₅	d) SCl ₂
			be determined by the para	
	$\frac{1}{2}\operatorname{Cl}_{2}(g) \xrightarrow{\frac{1}{2}\Delta_{\operatorname{diss}}H^{\circ}} \operatorname{Cl}(g) \xrightarrow{\Delta_{\operatorname{EA}}H^{\circ}}$,	
	4	e conversion of $\frac{1}{2}Cl_2(g)$ to	$Cl^{-}(aq)$ (Using the data)	
	$\Delta_{\mathrm{diss}^{H^{\circ}}\mathrm{Cl}_2} = 240 \text{ kJ mol}^{-1}$	2		
	$\Delta_{\text{EA}^{H^{\circ}}\text{Cl}} = -349 \text{ kJ mol}^{-1}$			
	$\Delta_{\text{hvd}}^{H^{\circ}}\text{Cl} = -381 \text{ kJ mol}^{-}$	¹ will be		
	,	b) -610 kJ mol ⁻¹	c) -850 kl mol ⁻¹	d) +120 kJ mol ⁻¹
	: : : : : : : : : : : : : : : : : : :	<i>pso</i> – carbon dichlorobenze		dj + 120 kj moi
	a) <i>sp</i> hybridized	b) sp^2 hybridised	c) $sp^2 d$ hybridized	d) sp^3 hybridised
		s maximum dipole momen		., ., .,
	a) NCl ₃	b) NBr ₃	c) NH ₃	d) NI ₃
		est dipole moment among t	(T (T));	, ,
	a) CHl ₃	b) CH ₄	c) CHCl ₃	d) CCl ₄
711.	Which of the following dia	atomic molecules would be	stabilized by the removal of	of an electron?
	a) C ₂	b) CN	c) N ₂	d) O ₂
712.	Which of the following po	ssess maximum hydration	energy?	
	a) MgSO ₄	b) RaSO ₄	c) SrSO ₄	d) BaSO ₄
713.	In which of the following	hydrogen bond is present?		

a) H ₂	b) Ice	c) Sulphur	d) Hydrocarbon
	f decreasing polarisability of		
a) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	b) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	c) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	d) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻
715. Which is highest me			
a) NaCl	b) NaBr	c) NaF	d) NaI
716. Number of σ and π l			
a) 3 and 2	b) 2 and 2	c) 2 and 3	d) 4 and 3
	ing halides is least stable and	d has doubtful existence?	
a) CI ₄	b) GeI ₄	c) SnI ₄	d) PbI ₄
718. C – C bond length is			
a) Diamond	b) Graphite	c) Naphthalene	d) Fullerene
477	ty difference between N and	\$ 7 7	een N and H yet the dipole
	5 D) is larger than that of NF	구경하다 가지 않는 그들이 구경하는 그들은 사람들이 되었다면 하는데 하는데 되었다면 하는데 되었다.	addition of the
	NF_3 the atomic dipole and b		
	c dipole and bond dipole are	e in the opposite directions	whereas in NF ₃ these are in the
same direction.			
1777	in NF ₃ the atomic dipole an	170	
	c dipole and bond dipole are	e in the same direction wher	reas in NF ₃ these are in
opposite directio			
720. Resonance is not sh		3	700 55 55
a) C ₆ H ₆	b) CO ₂	c) CO ₃ ²⁻	d) SiO ₂
	es of SF ₄ , CF ₄ and XeF ₄ are	noncensia et ma 🕊 oper suegamente despois . La statute e su commente de comp	
	0 and 2 lone pairs of electro	00400 Billion	*
	1 and 2 lone pairs of electro	-parietises in confidencias in percentificación de la financia de la financia de la constante de la constante d	
	1 and 1 lone pairs of electro		
	0 and 1 lone pairs of electro	ons on the central atom, resp	pectively
722. The shape of IF ₇ mo		15 77 1 111	
a) Pentagonal bipyr	amidal	b) Trigonal bipyramic	141
c) Tetrahedral	C Chandlanathia	d) Octahedral	
723. Decreasing order of			
(I)C ₂ H ₄	(II)C ₂ H ₂		
(III)C ₆ H ₆	$(IV)C_2H_6$	211212112111	4) 11/2 / 2 / 11/2 / 1
a) IV > III > I > II		c) II $> I > IV > III$	
	wing compounds, the bonds	276	
a) H ₂ O	b) HF	c) IBr	d) N ₂ O ₄
1/25	both are the member of san	ne group in Periodic Table b	out H ₂ O is liquid while H ₂ S is gas
because	t of water is mare		
a) Molecular weight			
 b) Electronegativity c) H₂S is weak acid 	of sulphur is more		
	are having strong hydrogen	hands between them	
726. The linear structure		bolids between them	
a) SnCl ₂	b) NCO ⁻	c) NO ₂ ⁺	d) CS ₂
=			finally to <i>sp</i> , the angle between
the hybridized orbit		anges nom sp to sp and i	many to sp, the angle between
a) Decreases gradua			
b) Decreases consid	S-10-E-10		
c) Is not affected	crabiy		
d) Increases progre	vlaviss		
70 (Mill 1764)	ssivery he maximum number of lone	e nair of electrons on the co	ntral atom?
, 20. Willen species has t	TO THANHIUM HUMBET OF TORK	c pair of electrons on the ce	na atom.

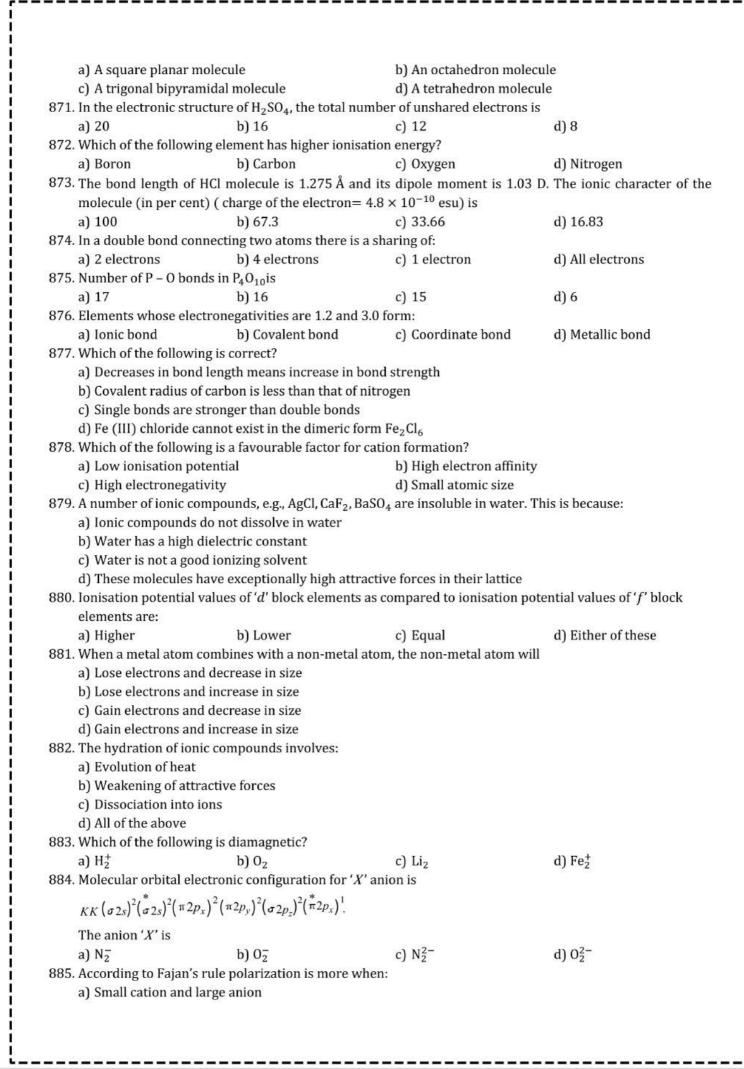
CLICK HERE >>>

v folo-1	2.00	13.57-3
a) [ClO ₃] b) XeF ₄	c) SF ₄	d) [I ₃]
729. Which concept best explains that <i>o</i> -nitrophenol is	more volatile than <i>p</i> -nitropl	nenol?
a) Resonance		
b) Steric hinderance		
c) Hydrogen bond		
d) Hyperconjugation		
730. How many bonded electron pairs are present in IF	7 molecule?	
a) 6 b) 7	c) 5	d) 8
731. The comparatively high b.p. of HF is due to		
a) High reactivity of fluorine		
b) Small size of hydrogen atom		
c) Formation of hydrogen bonds and consequent a	ssociation	
d) High IE of fluroine		
732. Which one of the following species is diamagnetic	in nature?	
a) H ₂ b) H ₂ ⁺	c) H ₂	d) He ₂ ⁺
733. The unequal sharing of bonded pair of electrons be	etween two atoms in a mole	cule gives rise to:
a) Ionic bond		
b) Polar covalent bond		
c) Non-polar covalent bond		
d) None of the above		
734. In which of the following process energy is liberate	ed?	
a) $Cl \rightarrow Cl^+ + e$ b) $HCl \rightarrow H^+ + Cl^-$	c) $Cl + e \rightarrow Cl^-$	d) $0^- + e \rightarrow 0^{2-}$
735. Identify the least stable ion amongst the following:		
a) Li b) Be	c) B-	d) C ⁻
736. The lowest bond energy exist in the following bond		3
a) C—C b) N—N	c) H—H	d) 0—0
737. Number of lone pair (s) in XeOF ₄ is/are		,,,,,,,, .
a) 0 b) 1	c) 2	d) 3
738. Which one is electron deficient compound?	-, -	, -
a) NH ₃ b) ICl	c) BCl ₃	d) PCl ₃
739. Which type of bond is present in H ₂ S molecule?	0) 2013	
a) Ionic bond	b) Covalent bond	
c) Coordinate	d) All of three	
740. In compound X , all the bond angles are exactly 109		
a) Chloromethane b) Iodoform	c) Carbon tetrachloride	d) Chloroform
741. The hybridisation of P in PCl ₅ is	c) carbon tetracinoriue	u) chlorolorin
a) sp^2 b) sp^3d	c) sp^3	d) dsp^2
742. Pauling's electronegativity values for elements are		u) asp
	userui in predicting:	
a) Polarity of bonds in molecules		
b) Position of elements in electromotive series		
c) Coordination number		
d) Dipole moment of various molecules	1 6110 0 011 011 :	
743. The hybridization of carbon atoms in C—C single b	10 To 10	
a) $sp^3 - sp^3$ b) $sp^2 - sp^3$	c) $sp-sp^2$	d) sp^3-sp
744. It is thought that atoms combine with each other s		
configuration of 8 electrons. If stability were attain	ied with 6 electrons rather t	han with 8, what would be
· · · · · · · · · · · · · · · · · · ·		
the formula of the stable fluoride ions?		3
the formula of the stable fluoride ions? a) F^{3+} b) F^{+}	c) F ⁻	d) F ²⁻
the formula of the stable fluoride ions?		(8)

746. Which has triangular p	lanar shape?		
a) CH ₃ ⁺	b) ClO ₂	c) H ₃ O ⁺	d) ClO ₃
	on geometry around and hyb	oridization of N and B atom	s in a 1:1 complex of BF_3 and
NH ₃ :			
a) N: tetrahedral, sp^3	1,50		
b) N : pyramidal, sp^3 ;	12 Table		
c) N: pyramidal, sp^3 ;			
d) N : pyramidal, sp^3 ;			
748. Which of the following	molecule has highest bond	energy?	
a) C — C	b) N – N	c) 0 – 0	d) F – F
749. The number of oxygen	atoms bonded to one phosp		
a) 4	b) 3	c) 6	d) 5
750. Bond energies in NO,N			
	b) $N0^+ > N0^- > N0$	c) $NO > NO^- > NO^+$	
	e and state of hybridisation		65
a) +6, $sp^3 d^3$, distorted	d octahedral	b) $+4$, $sp^3 d^2$, square pla	
c) $+6$, sp^3 , pyramidal		d) +6, sp^3d^2 , square pyr	ramidal
752. Which one of the follow	wing pairs of species have th	e same bond order?	
a) CN ⁻ and NO ⁺	b) CN ⁻ and CN ⁺	c) O ₂ and CN ⁻	d) NO ⁺ and CO
753. The bond length of spe	cies O_2 , O_2^+ and O_2^- are in the	order of	
a) $0_2^+ > 0_2 > 0_2^-$	b) $0_2^- > 0_2 > 0_2^+$	c) $0_2 > 0_2^+ > 0_2^-$	d) $O_2 > O_2^- > O_2^+$
754. Which hybridization re	esults non-polar orbitals?		
a) sp	b) sp^2	c) sp^3	d) dsp^2
755. The d -orbital involed i	n sp^3d hybridization is		
a) $d_{x^2-v^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}
756. The element with stron		2 2	5. 800
a) Cu	b) Cs	c) Cr	d) Ba
757. Which statement is con		40. 3 (10.000)	50 3 1-00000
a) X^+ ion is larger than			
b) X ⁻ ion is larger in si			
c) X^+ and X^- have the			
d) X^+ ion is larger in si			
	he hybridisations at sulphu	r atom respectively, as	
a) sp^2, sp^3, sp^2d^2	b) sp^3, sp^3, sp^3d^2	c) sp^{3} , $sp^{3}d$, $sp^{3}d^{2}$	d) sp^3 , spd^2 , d^2sp^3
759. Solid CH ₄ is:	-)	-) -1 /-1	-, -p ,-p ,p
a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist
	3, NH ⁺ and NH ⁻ 2 are in the or		
- Part Part Part (T. C.	b) $NH_4^+ > NH_3 > NH_2^-$		d) NH > NH $_{4}^{+}$ > NH $_{2}^{-}$
761. sp^2 -hybridization is sh	_	0)324	w)
a) BeCl ₂	b) BF ₃	c) NH ₃	d) XeF ₂
762. Cl – P – Cl bond angle		c) 1113	u) ner z
a) 120 and 90	b) 60 and 90	c) 60 and 120	d) 120 and 30
	wing pairs is isostructural (i		
a) [NF ₃ and BF ₃]	b) $[BF_4^-]$ and NH_4^+	c) [BCl ₃ and BrCl ₃]	d) [NH ₃ and NO ₃]
	wing sets of ions represents		25 D D D D
	b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺		d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
765. Which molecule has ze		cjik ,o ,i ,o	aj bi , ita , mg , ca
a) HF	b) HBr	c) H ₂ O	d) CO ₂
		50 Sec. 15 Co.	bond order is increasing in
them:	are nated below, identity the	. correct order in winten the	, bond order is increasing in
uieiii.			

CLICK HERE >>>

a) $NO < O_2^- < C_2^{2-} <$	< He ₂ ⁺		
b) $0_2^- < NO < C_2^{2-} <$	_		
c) $C_2^{2-} < He_2^+ < O_2^-$			
d) $He_2^+ < O_2^- < NO$			
	\cdot \cdot_2 lowing compounds has bon	d angle as nearly 00°2	
	b) H ₂ S	c) H ₂ O	4) CH
a) NH ₃		c) 1120	d) CH ₄
The state of the s	sulphur in SO ₃ molecule is	-)3 42	d)2
a) sp^3d	b) <i>sp</i> ³	c) sp^3d^2	d) sp^2
	wing pair both molecules do	(7)	(A)
a) CH ₄ and H ₂ O	b) PCl ₅ and SF ₄	c) SF ₆ and XeF ₄	d) BCl ₃ and NCl ₃
770. Which is the most co			15.20
a) C – F	b) C – O	c) C – S	d) C – Br
50			als with orbitals of nitrogen.
인프라 보호 주의	b) sp^2 -hybridized	c) Three <i>p</i> -orbitals	d) None of these
	s the largest ionic radius?	SX VILEGA GA	
a) Be ²⁺	b) Mg ²⁺	c) Ca ²⁺	d) Sr ²⁺
773. A σ -bonded molecul	le MX_3 is T-shaped. The num	nber non-bonding pairs of e	electron is
a) 0			
b) 2			
c) 1			
d) Can be predicted	only if atomic number of M	is known	
774. Which of the followi	ng is not isoelectronic?		
a) NO ⁻	b) CN ⁻	c) N ₂	d) O ₂ ²⁺
775. In which set of mole	cules are all the species par	amagnetic?	
a) B_2, O_2, N_2	b) B ₂ , O ₂ , NO	c) B_2 , F_2 , O_2	d) B ₂ , O ₂ , Li ₂
776. Which of the followi	ng has strongest hydrogen	bonding?	
a) Ethylamine	b) Ammonia	c) Ethyl Alcohol	d) Diethyl ether
777. The bonds present i	n N ₂ O ₅ are:		
a) Ionic			
b) Covalent and coo	rdinate		
c) Covalent			
d) Ionic and covalen	t		
	wo covalent bonds is maxin	num in:	
a) CH ₄	b) H ₂ O	c) CO ₂	d) SO ₃
779. The pair having sim	-		
a) PCl ₃ , NH ₄	b) BeCl ₂ , H ₂ O	c) CH ₄ , CCl ₄	d) IF ₅ , PF ₅
	ucture of acetic acid there a	- 1017 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	, , ,
	inshared valency electrons		
	inshared valency electrons		
	unshared valency electrons	S	
	inshared valency electrons		
	wer first) of size of the varie	ous hybridised orbitals is:	
a) sp, sp^2, sp^3	b) sp^3 , sp^2 , sp	c) sp^2, sp^3, sp	d) sp^2 , sp , sp^3
	g, the compound that contai		
a) NH ₃	b) NH ₄ Cl	c) NaCl	d) CaO
0.50 (35)	oxygen atoms are present i		u) cao
a) 6	b) 4	c) 2	d) 5
TO THE RESIDENCE OF THE PARTY O			d given below and identify the
compound (Z) form	and the programmer of the prog	don of an ionic compound	given below and identity the
compound (2) form	cu.		


802. Which of the fo	ollowing is largest ion?		
a) Na ⁺	b) Mg ²⁺	c) O ²⁻	d) F ⁻
803. The electronic	configuration of sodium and ch	nlorine justifies:	
a) Their physic	al state		
b) Their reactive	vity		
c) The formation	on of electrovalent compound I	NaCl	
d) None of the	above		
804. sp ³ hybridisati			
		2 610=	1) CO
a) $^{+}_{ m C~H_{3}}$	b) :C H ₃	c) ClO ₃	d) SO ₃
805. Glycerol is mor	e viscous than ethanol due to		
a) High molecu	ılar weight	b) High boiling point	
c) Many hydro	gen bonds per molecule	d) Fajan's rule	
806. In the case of a	lkali metals, the covalent chara	icter decreases in the order:	
a) MI > MBr >	MCl > MF		
b) MCl > MI >	MBr > MF		
c) MF > MCl >	MBr > MI		
d) MF > MCl >	· MI > MBr		
807. Two nodal plan			
	2750 86-20 0003	-2 -2-	1) =2m
a) $*2p_x$	b) $\sigma 2p_z$	c) $\pi 2p_x$	d) $\pi 2p_y$
808. H - bond is not	present in		
a) Water		b) Glycerol	
c) Hydrogen fl	uoride	d) Hydrogen sulphide	
		e bond order three and are isoe	electronic?
a) CN-, CO	b) CO, O ₂ ⁺	c) NO+, CO+	d) CN ⁻ , O ₂ ⁺
810. Which of the fo	ollowing halides has maximum	melting point?	A 151
a) NaF	b) NaCl	c) NaBr	d) NaI
811. Which atomic o	orbital is always involved in sig	gma bonding only?	C14 1100000000
a) <i>s</i>	b) <i>p</i>	c) d	d) <i>f</i>
		etal and sometimes as a non-m	2.
a) Hg	b) Cl	c) K	d) At
그래 프린		ation having the highest ionizat	
a) [Ne] $3s^23p^1$	b) [Ne]3s ² 3p ³	c) [Ne] $3s^23p^2$	d) [Ar] $3d^{10}4s^24p^3$
	ollowing species exhibits the dia		
a) 0^{2-}	b) 0 ⁺ ₂	c) O ₂	d) NO
	d solvent for ionic and polar co		,
a) H ₂ O	b) CH ₃ COOH	c) CCl ₄	d) Liquid NH ₃
	salt shows maximum covalent o		a) Diquia iii.3
a) AlCl ₃	b) MgCl ₂	c) CsCl	d) LaCl ₃
	owings has non-zero dipole mo	C10#1105740VW1993	a) badis
a) C ₆ H ₆	b) CO	c) SO ₂	d) NH ₃
	on pairs present in octahedral S		uj mi
a) 3	b) 4	c) 6	d) 5
The Control of the State of the Control of the Cont	actures can be written for	c, o	u) J
	b) NH ₃	c) CH ₄	d) H ₂ O
a) O_3	cle may be used to calculate	CJ GH4	u) 1120
a) Electronega		c) Oxidation number	d) Electron affinity
1000	17.7		u) Electron annity
621. The electronic	structure of four elements A, B	, c, D are	

23	50	2 2		
	$(B)1s^{2}$,	1 10 10		
$(C)1s^2$	$2s^2, 2p^5 (D)1s^2,$	$2s^2$, $2p^6$		
The ten	dency to form ele	ctrovalent bond is largest i	n	
a) A		b) <i>B</i>	c) C	d) D
822. In which	n element shieldir	ng effect is not possible?		
a) H		b) Be	c) B	d) N
823. The hyl	ridisation of orbi	tals of N atom in NO_3^- , NO_2^+	and NH ₄ are respectively:	
a) <i>sp, s</i>	p^2, sp^3	b) sp^2 , sp , sp^3	c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp
824. Which	of the following is	isoelectronic with carbon a	ntom?	
a) Na ⁺		b) Al ³⁺	c) 0^{2-}	d) N ⁺
825. Which	f the following st	atement is correct?		
a) Pola	ization of an anio	n is maximum by high char	ged cation	
b) Smal	sized cation min	imises the polarization		
c) A sm	all anion brings a	bout a large degree of pola	risation	
d) A sm	all anion undergo	es a high degree of polariza	ation	
826. Among	LiCl, BeCl ₂ , BCl ₃ a	nd CCl ₄ , the covalent bond	character follows the order	:
a) LiCl	$> BeCl_2 > BCl_3 >$	CCl ₄		
b) LiCl	< BeCl ₂ < BCl ₃ <	CCl ₄		
c) LiCl	$> BeCl_2 > CCl_4 >$	BCl ₃		
d) LiCl	$<$ BeCl $_2$ $<$ BCl $_3$ $>$	CCl ₄		
827. The val	ie of bond order i	in nitrogen and oxygen mol	ecule is:	
a) 3, 2		b) 4, 2	c) 2, 3	d) 1, 2
828. Pauling	received Nobel P	rize for his work on:		
a) Phot	osynthesis	b) Atomic structure	c) Chemical bonding	d) Thermodynamics
829. With w	nich of the given p	oairs CO ₂ resembles?		
a) HgCl	$_2$, C_2H_2	b) C ₂ H ₂ , NO ₂	c) HgCl ₂ , SnCl ₄	d) N_2O , NO_2
830. The enl	anced force of co	hesion in metals is due to:		
a) The	ovalent linkages	between atoms		
b) The	electrovalent linka	ages between atoms		
c) The	ack of exchange o	f valency electrons		
d) The	exchange energy o	of mobile electrons		
831. Among	HX, the maximum	n dipole moment is of:		
a) HF		b) HCl	c) HBr	d) HI
832. Dative	ond is present in	:		
a) SO_3		b) NH ₃	c) BaCl ₂	d) BF ₃
833. In which	n of the following	molecule, the central atom	does not have sp3-hybridiz	zation?
a) CH ₄		b) SF ₄	c) BF ₄	d) NH ₄ ⁺
834. Which	as an odd electro	n and shows paramagnetic	character?	
a) NO		b) SO ₂	c) CO ₂	d) H ₂ O
835. Which	on is not isoelectr	onic with 0 ^{2–} ?		
a) N ³⁻		b) Na ⁺	c) F ⁻	d) Ti ⁺
836. Which:	pecies is parama	gnetic?		
a) 0 ₂		b) CH ₃	c) CO	d) NO ⁺
837. Structu	e of ammonia is			
a) Pyra	nidal	b) Tetrahedral	c) Trigonal	d) Trigonal pyramidal
838. The exa	mple of the <i>p-p-</i> o	rbital overlapping is the for	rmation of:	
a) H ₂ m	olecule			
b) Cl ₂ n	olecule			
c) Hydi	ogen chloride			
d) Hydr	ogen bromide mo	lecule		

839. In which of the following $p\pi$ - $d\pi$ bonding is obser		
a) NO_3^- b) SO_3^{2-}	c) BO_3^{3-}	d) CO ₃ ²⁻
840. The shape of ClO ₄ ion is:		
a) Square planar b) Square pyramidal	c) Tetrahedral	d) Trigonal bipyramidal
841. The critical temperature of water is higher than the	at of O ₂ because H ₂ O moled	ule has:
a) Fewer electrons than O ₂		
b) Two covalent bonds		
c) V-shape		
d) Dipole moment		
842. Compound formed by sp^3d -hybridization will have	re structure:	
a) Trigonal bipyramidal		
b) T-shaped		
c) Linear		
d) Either of these depending on number of lone pa	air of electrons of central ato	om
843. Which has the lowest bond angle?		
a) NH ₃ b) BeF ₂	c) H ₃ O ⁺	d) CH ₄
844. Assuming that Hund's rule is violated, the bond or	der and magnetic nature of	the diatomic molecule B_2 is
a) 1 and diamagnetic		
b) 0 and diamagnetic		
c) 1 and paramagnetic		
d) 0 and paramagnetic		
845. The energy of antibonding molecular orbitals is:		
a) Greater than the bonding M.O.		
b) Smaller than the bonding M.O.		
c) Equal to that of bonding M.O.		
d) None of the above	1 * 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
846. The set representing the correct order of ionic rac	iius is:	
a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$		
b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$ c) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$		
d) $Li^+ > Be^{2+} > Li^+ > Na^+$		
5	ngoot?	
847. Which of the following hydrogen bonds is the stro a) O——HF	c) O——HO	d) O U E
a) O—HF 848. H ₂ O is dipolar, whereas BeF ₂ is not. It is because	c) 0—H0	d) O——HF
a) The electronegativity of F is greater than that o	fΩ	
b) H ₂ O involves hydrogen bonding whereas BeF ₂		
c) H ₂ O is linear and BeF ₂ is angular	is a discrete molecule	
d) H ₂ O is angular and BeF ₂ is linear		
849. Which of the following statements is most correct	? Effective nuclear charge of	an atom depends on:
a) The atomic number of the atom	. Directive nuclear charge of	un atom acpenas on.
b) The charge on the ion		
c) The shielding effect		
d) Both the actual nuclear charge and the shieldin	g effect	
850. The total number of valency electrons in PH ₄ ⁺ ion		
a) 8 b) 9	c) 6	d) 14
851. Phosphoric acid is syrupy in nature due to		/
a) Strong covalent bonding	b) Hydrogen bonding	
c) van der Waals' forces	d) None of the above	
852. The correct order of bond angles is:	250	
a) $H_2S < NH_3 < BF_3 < SiH_4$		

b) $NH_3 < H_2S < SiH_4 < BF$,Ti		
c) $H_2S < NH_3 < SiH_4 < BF$	***		
d) $H_2S < SiH_4 < NH_3 < BF$	370a.		
853. Metallic lusture is explaine	d by	100 100 120 120	
 a) Diffusion of metal ions 		b) Oscillation of loose elec	trons
 c) Excitation of free proton 		d) Existence of bcc lattice	
854. Which of the following phe	nomenon will occur when	two atoms of same spin w	ill react?
a) Bonding will not occur			
b) Orbital overlap will not o	occur		
c) Both (a) and (b)			
d) None of the above	is similar to that of		
855. The hybrid state of S in SO ₃	b) C in C ₂ H ₄	a) Cin CU	d) C in CO
a) C in C ₂ H ₂ 856. Among the following the pa	19 ⁵ 40 14 - 18 ⁵ 0. 19 ⁵ 1.	c) C in CH ₄	d) C in CO ₂
	b) PF_6^- and SF_6	c) BH ₄ and NH ₄	d) SiF ₄ and SF ₄
857. Which of the following spec			
	b) PCl ₃	c) H ₂ 0	d) BF ₃
858. Intramolecular hydrogen b		cj 1120	u) D13
	b) Water	c) Acetaldehyde	d) Phenol
859. The type of bond formed be	지근 하게 되었다는 사람이 가입했다.	[() [[[[[[[[[[[[[[[[[57 4 (0.05757780)
	b) Covalent	c) Dative	d) Hydrogen
860. Which of the following state	ements is correct about N	molecule?	
a) It has a bond order of 3		b) The number of unpaire	d electrons present in it is
		zero and hence, it is dia	magnetic
c) The order of filling of MO $\pi(2p_y), \sigma(2p_z)$	Os is $\pi(2p_x) =$	d) All the above three state	ements are correct
$\pi(2p_y), \sigma(2p_z)$			
861. Ice has an open structure co		which it floats on water and	l occupies a greater volume
of space. The open structur	e of ice is due to:		
a) Solid state of ice	b) Its low density	c) Crystalline nature	d) Hydrogen bonding
862.Which of the following has	minimum melting point?		
	b) HCl	c) HF	d) LiF
863. Geometry of ammonia mole		n of nitrogen involved in it	are
a) sp^3 hyridisation and teti			
b) sp^3 hyridisation and dis		ry	
c) sp ² hyridisation and tria	angular geometry		
d) None of the above	.1 1 1		
864. The molecule having smalle		a) NIII	J) II T-
a) H ₂ O 865. For a covalent solid, the un	b) H ₂ S its which accupy lattice po	c) NH ₃	d) H ₂ Te
	b) Ions	c) Molecules	d) Electrons
866. Carbon suboxide (C_3O_2) ha			
the following formulation r	9.70	[55]	
10 Th	b) :0::C::C:C::0:	c) : Ö::C::C::C:: Ö:	d) :O: C: C: C: O:
867. The ionization energy will l	Banks and Shakara and and San	STATE OF STA	
	b) Be → Be ²⁺	c) $Cs \rightarrow Cs^+$	d) $Li \rightarrow Li^+$
868. Born Haber cycle is used to			7
		c) Ionization energy	d) Either of them
869. In which of the following m	대통령 (1878년 1일 12일 - 12일	그렇게 되다 하면 보지 않는 사람들이 없는 것이 없는 나라를 하다.	
	b) NO ₂ and NH ₂	c) NH ₂ and H ₂ O	d) NO ₂ and H ₂ O
870. $sp^3 d$ hybridisation results			

b) Small cation and sma			
c) Large cation and larg	ge anion		
d) Large cation and sma			
886. Organic compounds sol			
a) C, H. Cl	b) C, H	c) C, H, O	d) C, S
887. Atomic radii of fluorine		are respectively given by:	
a) 0.72, 1.60	b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
888. The decreasing order o	f bond angle is	ANGER SERVICESCOLO SERVICESCOLO DE PROMESSA DE	
a) $NO_2 > NO_2^+ > NO_2^-$		b) $NO_2^- > NO_2 > NO_2^+$	
c) $NO_2^+ > NO_2 > NO_2^-$		d) $NO_2^+ > NO_2^- > NO_2$	
889. The correct order of dip			
a) $CH_4 < NF_3 < NH_3 <$			
b) $NF_3 < CH_4 < NH_3 <$	18.25.T. (1)		
c) $NH_3 < NF_3 < CH_4 <$			
d) $H_2O < NH_3 < NF_3 <$			
890. Which oxide of nitroger	· · · · · · · · · · · · · · · · · · ·		
a) NO ₂	b) N ₂ O	c) NO	d) N ₂ O ₂
891. Which of the following	molecules does not possess	a permanent electric dipole	e moment?
a) H ₂ S			
b) SO ₂			
c) SO ₃			
d) CS ₂		CONTRACTOR DATABASES MICH. VI. CO. I	
892. Among O, C, F, Cl, Br the	11.075		Parantialis Visitassi soni dalli sicciologi, scoli fadici
그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	b) $F < C < 0 < Br < Cl$	그렇게 되어 그리막겠다고 바다들아하고 되었다며 말했다요	
893. In which of the following	7 00 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		*
a) 0 ⁺ ₂ , NO, CN ⁻	b) CN^-, N_2^+, N_2	c) N_2^+ , NO, O_2^+	d) O_2^+ , CN^- , N_2^+
894. What type of hybridisat			
a) sp^2	b) <i>sp</i> ³	c) dsp^2	d) <i>sp</i>
895. Identify the correct ord		나는 그 이 이 없는 경기를 모르는 바람이 되었다. 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	
a) $CuS > ZnS > Na_2S$	b) $ZnS > Na_2S > CuS$		d) $Na_2S > ZnS > CuS$
896. In the following molecu	le, the two carbon atoms ma	arked by asterisk (*) posse	ss the following type of
hybridized orbitals:			
H ₃ C − Č ≡	= [*] C−CH ₃		
a) sp^3 -orbital	b) sp ² -orbital	c) sp-orbital	d) s-orbital
897. Debye an unit of dipole	0.70	., -F	.,
a) 10^{-10} esu cm	b) 10 ⁻¹⁸ esu cm	c) 10^{-6} esu cm	d) 10^{-12} esu cm
898. Which of the following	and the state of t		.,
a) High electronegativi		b) High electron affinity	
c) Low ionisation poter		d) Smaller atomic size	
899. The paramagnetic mole			
a) H ₂	b) 0 ₂	c) N ₂	d) CO
900. The bond in the format			u) uo
a) Due to $s-s$ overlap		b) Due to $s-p$ overlappi	nσ
c) Due to $p-p$ overlap		d) Due to hybridisation	****
901. The diamagnetic molec	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.,,	
a) B ₂ , C ₂ , N ₂	b) O ₂ , N ₂ , F ₂	c) C ₂ , N ₂ , F ₂	d) B ₂ , O ₂ , N ₂
902. The IP ₁ is maximum for		-1 -2,2,.2	-1-21-212
a) K	b) Na	c) Be	d) He
903. In the transition of Cu t		400 P 1 2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	197 9 (2.1938)
100 to	management - Milessociation ಪ್ರವರ್ಷಕ್ಕೆ ಮುಖ್ಯಾಪ್ ಪ್ರಾಥೆಯ ಕ್ರಾಹಿಸಿಗಳು ಕಿರಿ	600	

a) Atomic number b) Atomic mass c) Equivalent weight d) Number of valency electrons equivalent electrons electrons equivalent electrons electrons equivalent electrons electr
c) Equivalent weight d) Number of valency electrons 904. In the following, which bond will be responsible for maximum value of hydrogen bond? a) $N-H$ b) $0-H$ c) $F-H$ d) $S-H$ 905. The bond order of O_2^+ is the same as in a) N_2^+ b) CN^- c) CO d) NO^+ 906. Structure of XeF_5^+ ion is a) Trigonal bipyramidal b) Square pyramidal c) Octahedral d) Pentagonal 907. The fHOMO in CO is a) π - bonding b) π -antibonding c) σ -antibonding d) σ -bonding 908. Which of the following has sp^3 -hybridization on central atom? a) E^2 b) E^2 b) E^2 c) E^2
d) Number of valency electrons 904. In the following, which bond will be responsible for maximum value of hydrogen bond? a) $N-H$ b) $0-H$ c) $F-H$ d) $S-H$ 905. The bond order of O_2^+ is the same as in a) N_2^+ b) CN^- c) CO d) NO^+ 906. Structure of XEF_0^+ ion is a) Trigonal bipyramidal b) Square pyramidal c) Octahedral d) Pentagonal 907. The fHOMO in CO is a) π - bonding b) π -antibonding c) σ -antibonding d) σ -bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF_2 b) BCI_3 c) SO_3 d) CCI_4 909. Which one has sp^3 hybridisation? a) N_2O b) CO_2 c) CO_3 d) CO_4 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $In P_4O_{10}$ the a) Second bond in $P=O$ is formed by $p\pi-d\pi$ back bonding b) $P=O$ bond is formed by $d\pi-d\pi$ bonding c) $P=O$ bond is formed by $d\pi-d\pi-d\pi$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and two double bond 913. Which shows non-directional bonding? a) BCI_3 b) $CSCI$ c) NCI_3 d) $BECI_3$ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5CI b) H_2O c) NCI_3 d) COI_3 915. $Na^2T_1N_2B_2^2T_2A_1I^3T_2I^3T_3I^$
904. In the following, which bond will be responsible for maximum value of hydrogen bond? a) $N-H$ b) $O-H$ c) $F-H$ d) $S-H$ 905. The bond order of O_2^+ is the same as in a) N_2^+ b) CN^- c) CO d) NO^+ 906. Structure of XEF_3^+ ion is a) Trigonal bipyramidal b) Square pyramidal c) Octahedral d) Pentagonal 907. The fHOMO in CO is a) π -bonding b) π -antibonding c) σ -antibonding d) σ -bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF_2 b) BCI_3 c) SO_3 d) CCI_4 909. Which one has sp^3 hybridisation? a) N_2O b) CO_2 c) SO_2 d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $In P_4O_{10}$ the a) Second bond in $P=O$ is formed by $p\pi-d\pi$ back bonding b) $P=O$ bond is formed by $d\pi-d\pi$ bonding d) $P=O$ bond is formed by $d\pi-d\pi$ bonding e) $P=O$ bond is formed by $d\pi-d\pi$ bonding c) $P=O$ bond is formed by $d\pi-d\pi$ bonding d) CO 2. Allene CO 3. Allene CO 3. Allene CO 3. Allene CO 3. Allene CO 4. Allene CO 5. Allene CO 6. Allene CO 6. Allene CO 6. Allene CO 7. Allene CO 7. Allene CO 8.
a) $N-H$ b) $0-H$ c) $F-H$ d) $S-H$ 905. The bond order of O_2^+ is the same as in a) N_2^+ b) O_2^+ c) O_2^+ c) O_2^+ d)
905. The bond order of O_2^+ is the same as in a) N_2^+ b) CN^- c) CO d) NO^+ 906. Structure of XeF_5^+ ion is a) Trigonal bipyramidal b) Square pyramidal c) Octahedral d) Pentagonal 907. The fHOMO in CO is a) π - bonding b) π -antibonding c) σ -antibonding d) σ - bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF_2 b) BCl_3 c) SO_3 d) CCl_4 909. Which one has sp^3 hybridisation? a) N_2O b) CO_2 c) SO_2 d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $In P_4O_{10}$ the a) Second bond in $P = O$ is formed by $p\pi - p\pi$ bonding c) $P = O$ bond is formed by $d\pi - d\pi$ back bonding b) $P = O$ bond is formed by $d\pi - d\pi$ bonding d) $P = O$ bond is formed by $d\pi - d\pi$ bonding c) $P = O$ bond is formed by $R = O$ bond is formed
a) N_2^+ b) CN^- c) CO d) NO^+ 906. Structure of XeF_5^+ ion is a) Trigonal bipyramidal b) Square pyramidal c) Octahedral d) Pentagonal 907. The fHOMO in CO is a) π - bonding b) π -antibonding c) σ -antibonding d) σ - bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF_2 b) BCl_3 c) SO_3 d) Cl_4 909. Which one has sp^3 hybridisation? a) N_2O b) CO_2 c) Cl_4 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $\ln P_4O_{10}$ the a) Second bond in $P = O$ is formed by $p\pi - d\pi$ back bonding b) $P = O$ bond is formed by $p\pi - p\pi$ bonding c) $P = O$ bond is formed by $d\pi - d\pi$ bonding d) $P = O$ bond is formed by $d\pi - d\pi$ bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) $CSCl$ c) NCl_3 d) BCl_3 914. Which one of the following contains both ionic and covalent bonds? a) C_0H_5Cl b) H_2O c) $NaOH$ d) CO_2
906. Structure of XEF_5^* ion is a) Trigonal bipyramidal b) Square pyramidal c) Octahedral d) Pentagonal 907. The fHOMO in CO is a) π - bonding b) π -antibonding c) σ -antibonding d) σ - bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF2 b) BCl3 c) SO3 d) CCl4 909. Which one has sp^3 hybridisation? a) N2O b) CO2 c) SO2 d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. In P_4O_{10} the a) Second bond in $P=0$ is formed by $p\pi-p\pi$ bonding b) $P=0$ bond is formed by $p\pi-p\pi$ bonding c) $P=0$ bond is formed by $d\pi-d\pi$ bonding d) $P=0$ bond is formed by $d\pi-d\pi$ bonding c) $d\pi-d\pi$ bonding c) $d\pi-d\pi$ bonding d) $d\pi-d\pi-d\pi$ bonding d) $d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d\pi-d$
a) Trigonal bipyramidal b) Square pyramidal c) Octahedral d) Pentagonal 907. The fHOMO in CO is a) π - honding b) π -antibonding c) σ -antibonding d) σ - bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF2 b) BCl3 c) SO3 d) CCl4 909. Which one has sp^3 hybridisation? a) N2O b) CO2 c) SO2 d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. In P_4O_{10} the a) Second bond in $P = O$ is formed by $p\pi - d\pi$ back bonding b) $P = O$ bond is formed by $q\pi - d\pi$ bonding c) $P = O$ bond is formed by $q\pi - d\pi$ bonding d) $P = O$ bond is formed by $q\pi - d\pi$ bonding c) $P = O$ bond is formed by $P = O$ bond is
907. The fHOMO in CO is a) π - bonding b) π -antibonding c) σ -antibonding d) σ - bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF $_2$ b) BCl $_3$ c) SO $_3$ d) CCl $_4$ 909. Which one has sp^3 hybridisation? a) N $_2$ O b) CO $_2$ c) SO $_2$ d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. In P $_4$ O $_1$ 0 the a) Second bond in P = O is formed by $p\pi - d\pi$ back bonding b) P = O bond is formed by $p\pi - p\pi$ bonding c) P = O bond is formed by $d\pi - d\pi$ bonding d) P = O bond is formed by $d\pi$ d $d\pi$ bonding 912. Allene (C $_3$ H $_4$) contains a) One double bond, one triple bond and one single bond b) One triple and two double bond c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl $_3$ b) CSCl c) NCl $_3$ d) BeCl $_3$ 914. Which one of the following contains both ionic and covalent bonds? a) C $_6$ H $_5$ Cl b) H $_2$ O c) NaOH d) CO $_2$ 915. Na+, Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
a) π - bonding b) π -antibonding c) σ -antibonding d) σ - bonding 908. Which of the following has sp^3 -hybridization on central atom? a) BF2 b) BCl3 c) SO3 d) CCl4 909. Which one has sp^3 hybridisation? a) N2O b) CO2 c) SO2 d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. In P_4O_{10} the a) Second bond in $P=0$ is formed by $p\pi-d\pi$ back bonding b) $P=0$ bond is formed by $p\pi-p\pi$ bonding c) $P=0$ bond is formed by $d\pi-d\pi$ back bonding 912. Allene (C ₃ H ₄) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl3 b) CsCl c) NCl3 d) BeCl3 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) NaOH d) CO2
908. Which of the following has sp^3 -hybridization on central atom? a) BF ₂ b) BCl ₃ c) SO ₃ d) CCl ₄ 909. Which one has sp^3 hybridisation? a) N ₂ O b) CO ₂ c) SO ₂ d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. In P ₄ O ₁₀ the a) Second bond in P = O is formed by $p\pi - d\pi$ back bonding b) P = O bond is formed by $p\pi - p\pi$ bonding c) P = O bond is formed by $d\pi - d\pi$ bonding d) P = O bond is formed by $d\pi - d\pi$ bonding d) P = O bond is formed by $d\pi - d\pi$ bonding e) P = O bond is formed by $d\pi$ do bonding 912. Allene (C ₃ H ₄) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C ₆ H ₅ Cl b) H ₂ O c) NaOH d) CO ₂ 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
a) BF $_2$ b) BCl $_3$ c) SO $_3$ d) CCl $_4$ 909. Which one has sp^3 hybridisation? a) N $_2$ O b) CO $_2$ c) SO $_2$ d) CO 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $\ln P_4O_{10}$ the a) Second bond in P = O is formed by $p\pi - d\pi$ back bonding b) P = O bond is formed by $p\pi - p\pi$ bonding c) P = O bond is formed by $d\pi - d\pi$ bonding d) P = O bond is formed by $d\pi - d\pi$ bonding d) P = O bond is formed by $d\pi - d\pi$ bonding e) P = O bond is formed by $d\pi - d\pi$ bonding d) P = O bond is formed by $d\pi - d\pi$ bonding e) One triple and two double bond and one single bond b) One triple and two double bond c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl $_3$ b) CsCl c) NCl $_3$ d) BeCl $_3$ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) NaOH d) CO $_2$
909. Which one has sp^3 hybridisation? a) N_2O b) CO_2 c) SO_2 d) CO_3 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $In P_4O_{10}$ the a) Second bond in $P = O$ is formed by $p\pi - d\pi$ back bonding b) $P = O$ bond is formed by $p\pi - p\pi$ bonding c) $P = O$ bond is formed by $d\pi - d\pi$ bonding d) $P = O$ bond is formed by $d\pi - d\pi = 0$ bonding e) $P = O$ bond is formed by $d\pi - d\pi = 0$ bonding for $d\pi = 0$ bond is formed by $d\pi - d\pi = 0$ bonding e) $P = O$ bond is formed by $d\pi - d\pi = 0$ bonding for $d\pi = 0$ bond is formed by $d\pi - d\pi = 0$ bonding e) $P = O$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bonding for $R = 0$ bond is formed by $R = 0$ bonding for $R = 0$ bondin
a) N_2O b) CO_2 c) SO_2 d) CO_2 910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $In P_4O_{10}$ the a) Second bond in $P = O$ is formed by $p\pi - d\pi$ back bonding b) $P = O$ bond is formed by $p\pi - p\pi$ bonding c) $P = O$ bond is formed by $d\pi - d\pi$ back bonding d) $d\pi$ be $d\pi$ bond in $d\pi$ bonding q) $d\pi$ contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) $d\pi$ b) $d\pi$ c) $d\pi$ c) $d\pi$ d) $d\pi$ d) $d\pi$ and $d\pi$ bonding electronic and covalent bonds? a) $d\pi$ b) $d\pi$ c) $d\pi$ d) d
910. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $\ln P_4 O_{10}$ the a) Second bond in $P=0$ is formed by $p\pi-d\pi$ back bonding b) $P=0$ bond is formed by $p\pi-p\pi$ bonding c) $P=0$ bond is formed by $d\pi-d\pi$ bonding d) $P=0$ bond is formed by $d\pi-d\pi=0$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) $CSCl$ c) NCl_3 d) $BCCl_3$ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) $NaOH$ d) CO_2
a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 911. $\ln P_4O_{10}$ the a) Second bond in $P=0$ is formed by $p\pi-d\pi$ back bonding b) $P=0$ bond is formed by $p\pi-p\pi$ bonding c) $P=0$ bond is formed by $d\pi-d\pi$ bonding d) $P=0$ bond is formed by $d\pi-d\pi=0$ bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) C_3Cl c) NCl_3 d) C_3Cl 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) N_2O 915. N_2O c) N_3O c) N_3O d) N_3O c) N_3O
b) Sharing of electrons c) Donation of electron pair d) None of the above 911. In P_4O_{10} the a) Second bond in $P = 0$ is formed by $p\pi - d\pi$ back bonding b) $P = 0$ bond is formed by $p\pi - p\pi$ bonding c) $P = 0$ bond is formed by $d\pi - d\pi$ bonding d) $P = 0$ bond is formed by $d\pi - d\pi$ bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) $CSCl$ c) NCl_3 d) BCl_3 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) $NaOH$ d) CO_2
c) Donation of electron pair d) None of the above 911. In P_4O_{10} the a) Second bond in $P=0$ is formed by $p\pi-d\pi$ back bonding b) $P=0$ bond is formed by $p\pi-p\pi$ bonding c) $P=0$ bond is formed by $d\pi-d\pi$ bonding d) $P=0$ bond is formed by $d\pi-d\pi-d\pi$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) $CSCl$ c) CCl_3 d) CCl_3 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) CCl_3 d) CCl_3 915. CCl_3 c) CCl_3 d) CCl_3
d) None of the above $911. \ ln \ P_4O_{10} \ the$ a) Second bond in $P=0$ is formed by $p\pi-d\pi$ back bonding b) $P=0$ bond is formed by $p\pi-p\pi$ bonding c) $P=0$ bond is formed by $d\pi-d\pi$ bonding d) $P=0$ bond is formed by $d\pi-d\pi$ bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) C_3Cl c) C_3Cl d) C_3Cl d) C_3Cl 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) N_3Cl d) C_3Cl 915. N_3A^2 , N_3A^2 , N_3A^3 , N_3A
d) None of the above $911. \text{ In P}_4O_{10} \text{ the}$ a) Second bond in P = 0 is formed by $p\pi - d\pi$ back bonding b) P = 0 bond is formed by $p\pi - p\pi$ bonding c) P = 0 bond is formed by $d\pi - d\pi$ bonding d) P = 0 bond is formed by $d\pi - d\pi - 3\sigma$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) NaOH d) CO ₂ 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
911. In P_4O_{10} the a) Second bond in $P = 0$ is formed by $p\pi - d\pi$ back bonding b) $P = 0$ bond is formed by $p\pi - p\pi$ bonding c) $P = 0$ bond is formed by $d\pi - d\pi$ bonding d) $P = 0$ bond is formed by $d\pi - d\pi - 3\sigma$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) C_3 c) NCl_3 d) C_3 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) C_3 c) C_3 c) C_3 d) C_3 915. C_3 Na ⁴ , C_3 Na ⁴ , C_3 All ³⁺
a) Second bond in P = 0 is formed by $p\pi - d\pi$ back bonding b) P = 0 bond is formed by $p\pi - p\pi$ bonding c) P = 0 bond is formed by $d\pi - d\pi$ bonding d) P = 0 bond is formed by $d\pi - d\pi - 3\sigma$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) NaOH d) CO_2
b) $P = 0$ bond is formed by $p\pi - p\pi$ bonding c) $P = 0$ bond is formed by $d\pi - d\pi$ bonding d) $P = 0$ bond is formed by $d\pi - d\pi - 3\sigma$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) C_3Cl_3 c) C_3Cl_3 d) C_3Cl_3 914. Which one of the following contains both ionic and covalent bonds? a) $C_3C_3C_3$ c) $C_3C_3C_3$ 915. C_3C_3 Na C_3C_3 c) Na C_3 d) C_3C_3 O) Na C_3 O) Na $C_$
c) $P=0$ bond is formed by $d\pi-d\pi$ bonding d) $P=0$ bond is formed by $d\pi-d\pi-3\sigma$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) C_3Cl c) C_3Cl_3 d) C_3Cl_3 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) C_3Cl c) C_3Cl d) C_3Cl 915. C_3Cl d) C_3Cl d) C_3Cl e) C_3Cl d) C_3Cl d) C_3Cl e) C_3Cl d) C_3Cl e) C_3Cl d) C_3Cl e) C_3C
d) $P=0$ bond is formed by $d\pi-d\pi-3\sigma$ back bonding 912. Allene (C_3H_4) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl_3 b) $CsCl$ c) NCl_3 d) $CsCl_3$ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) $CsCl$ c) $CsCl$ d) $CsCl$ d) $CsCl$ d) $CsCl$ e) $CsCl$ d) $CsCl$ d) $CsCl$ d) $CsCl$ e) $CsCl$ d) $CsCl$ d) $CsCl$ d) $CsCl$ e) $CsCl$ e) $CsCl$ b) $CsCl$ c) $CsCl$ d) $CsCl$ e) $CsCl$ d) $CsCl$ d) $CsCl$ e) $CsCl$
912. Allene (C ₃ H ₄) contains a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C ₆ H ₅ Cl b) H ₂ O c) NaOH d) CO ₂ 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
a) One double bond, one triple bond and one single bond b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C ₆ H ₅ Cl b) H ₂ O c) NaOH d) CO ₂ 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
b) One triple and two double bonds c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C ₆ H ₅ Cl b) H ₂ O c) NaOH d) CO ₂ 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
c) Two triple and one double bond d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C ₆ H ₅ Cl b) H ₂ O c) NaOH d) CO ₂ 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
d) Two double and four single bond 913. Which shows non-directional bonding? a) BCl ₃ b) CsCl c) NCl ₃ d) BeCl ₃ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) NaOH d) CO_2 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
913. Which shows non-directional bonding? a) BCl_3 b) $CsCl$ c) NCl_3 d) $BeCl_3$ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) $NaOH$ d) CO_2 915. $Na^+, Mg^{2+}, Al^{3+}, Si^{4+}$ are isoelectronics. Their ionic size follows the order:
a) BCl_3 b) $CsCl$ c) NCl_3 d) $BeCl_3$ 914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) $NaOH$ d) CO_2 915. Na^+ , Mg^{2+} , Al^{3+} , Si^{4+} are isoelectronics. Their ionic size follows the order:
914. Which one of the following contains both ionic and covalent bonds? a) C_6H_5Cl b) H_2O c) NaOH d) CO_2 915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
a) C_6H_5Cl b) H_2O c) NaOH d) CO_2 915. $Na^+, Mg^{2+}, Al^{3+}, Si^{4+}$ are isoelectronics. Their ionic size follows the order:
915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic size follows the order:
a) Na Mg Ai Si
b) $Na^+ > Mg^{2+} < Al^{3+} < Si^{4+}$
c) $Na^{+} < Mg^{2+} > Al^{3+} > Si^{4+}$
d) $Na^+ > Mg^{2+} > Al^{3+} > Si^{4+}$
916. Which of the following does not apply to metallic bond?
a) Overlapping valence orbitals
b) Mobile valence electrons
c) Delocalized electrons
d) Highly directed bonds
917. Van der Waals' forces are maximum in:
a) HBr b) LiBr c) LiCl d) AgBr
918. The internuclear distance in H ₂ and Cl ₂ molecules are 74 and 198 pm respectively. The bond length of H—
Cl may be:
a) 272 pm b) 70 pm c) 136 pm d) 248 pm

919. The molecule having ze	ero dipole moment is		
a) CH ₂ Cl ₂	b) BF ₃	c) NF ₃	d) ClF ₃
920. For a stable molecule, t	he value of bond order mus	st be	
a) There is no relations	hip between stability and b	ond order	
b) Zero			
c) Positive			
d) negative			
921. Which compound amou	ng the following has more c	ovalent character?	
a) AlCl ₃	b) AlI ₃	c) MgI ₂	d) NaI
922. Which among the follow	wing has the largest dipole	moment?	
a) NH ₃	b) H ₂ O	c) HI	d) SO ₃
923. The hybridization of ph	1.747	as in:	
a) P in PCl ₃	b) S in SF ₆	c) Cl in ClF ₃	d) B in BCl ₃
924. A square planar comple	ex is formed by hybridisation	on of the following atomic or	bitals
a) s, p_x, p_y, p_z	b) s, p_x, p_y, p_z, d	c) d, s, p_x, p_y	d) s, p_x, p_y, p_z, d, d
925. Which of the following	pairs are isostructural?		
a) SO ₃ ²⁻ , NO ₃	b) BF ₃ , NF ₃	c) BrO ₃ , XeO ₃	d) SF ₄ , XeF ₄
926. Among HF, CH ₄ , CH ₃ OF	I and N ₂ O ₄ intermolecular l	hydrogen bond is expected	
a) In two	b) In all	c) In all leaving one	d) None of these
927. Hydration of different i	ons in aqueous solution is a	n example of	
a) Ion – induced dipole	interaction		
b) Dipole - dipole intera	action		
c) Dipole – induced dip	ole interaction		
d) Ion – dipole interact			
928. Amongst LiCl, RbCl, BeC	Cl ₂ and MgCl ₂ , the compoun	ds with the greatest and the	least ionic character,
respectively			
a) LiCl and RbCl	b) RbCl and MgCl ₂	c) RbCl and BeCl ₂	d) MgCl ₂ and BeCl ₂
929. The percentage of p – c			
a) 25	b) 33	c) 50	d) 75
930. Atoms or group of aton		_	othic soundary as
a) Anions	b) Cations	c) Ions	d) Atoms
931. Which among the follow			1) 0
a) Mg	b) Ca	c) Ba	d) Sr
932. IP ₂ for an element is in	rango palabagan ng malabagan an anakan an manakan an managan an managan an managan an managan an managan an mana	ause:	
a) The size of cation isb) It is difficult to remo			
c) Effective nuclear chad) All of the above	irge is more for cation		
933. In forming (i) $N_2 \rightarrow N_2$	† and (ii) $0 \rightarrow 0^{\dagger}$; the ele	etrone roenactivaly are rom	avad from
		ections respectively are rem	oved ITOIII
a) $(\tilde{\pi} 2 p_y \text{ or } \tilde{\pi} 2 p_x)$	and $(\pi^2 2 p_y \text{ or } \pi^2 2 p_x)$		
	./		
b) $(\pi 2 p_y \text{ or } \pi 2 p_x)$	and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		
c) $(\pi 2 p_y \text{ or } \pi 2 p_x)$	and $(\pi^2 p_y)$ or $\pi^2 p_x$		
d) $(\stackrel{*}{\pi} 2 p_y \text{ or } \stackrel{*}{\pi} 2 p_x)$	and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		
934. Which one pair of atom	s or ions will have same co	nfiguration?	
a) Li ⁺ and He ⁻	b) Cl ⁻ and Ar	c) Na and K	d) F ⁺ and Ne
	pest explained by the coordi		

			(I)	
	a) $H^+ + H_2O$	b) Cl + Cl	c) Mg + $\frac{1}{2}$ O ₂	d) $H_2 + I_2$
936	6. The dipole moment of CH	Cl ₃ is 1.05 debye while that	t of CCl ₄ is zero, because CC	Cl ₄ is:
	a) Linear	b) Symmetrical	c) Planar	d) Regular tetrahedral
937	7. Which shows the highest	lattice energy?		
	a) RbF	b) CsF	c) NaF	d) KF
938	3. In a polar molecule, the io	onic charge is 4.8×10^{-10} e.	s.u. If the inter ionic distand	ce is 1 Å unit, then the dipole
	moment is			
	a) 41.8 debye	b) 4.18 debye	c) 4.8 debye	d) 0.48 debye
939	9. The correct order regardi	ing the electronegativity of	hybrid orbitals of carbon is	S:
	a) $sp < sp^2 > sp^3$	b) $sp < sp^2 < sp^3$	c) $sp > sp^2 < sp^3$	d) $sp > sp^2 > sp^3$
940	0. Which of the following gr	oups all do not have $sp^3 d$ l	hybridisation?	
	a) ClF ₃ , IF ₃ , XeF ₃ ⁺	b) ICl ₂ , ClF ₂ , I ₃	c) ClF ₃ , BrF ₃ , IF ₃	d) PCl ₃ , AsCl ₃ , PF ₅
94:	1. Which of the following co	mpounds does not follow t	he octet rule for electron d	istribution?
	a) H ₂ O	b) PH ₃	c) PCl ₃	d) PCl ₅
942	2. Which of the following se	ts represents the collection	of isoelectronic species?	
	a) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻	b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	c) K ⁺ ,Cl ⁻ ,Mg ²⁺ ,Sc ³⁺	d) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻
943	Which of the following ha	is unchanged valency?		
	a) H	b) Na	c) Fe	d) O
944	4. The structure of XeF ₄ is:			
	a) Planar	b) Tetrahedral	c) Square planar	d) Pyramidal
945	5. N_2 and O_2 are converted i	into N_2^+ and O_2^+ respectively	у.	
	Which of the following is			
	a) In N_2^+ , the N – N bond v			
	b) In O_2^+ , $O - O$ bond orde			
	c) In O_2^+ , paramagnetism			
	d) N ₂ ⁺ becomes diamagne			
946	6. Which molecule has trigo	150 G		
17547.500	a) IF ₃	b) PCl ₃	c) NH ₃	d) BF ₃
947	7. Malleability and ductility		due to	
	a) The presence of electro			
	b) The crystalline structu		8	
		of metal ions to slide over t		
0.44	TO 100	trons with metal ions in the	alattice	
948	B. Underlined carbon is sp^3	1500		N OUT OUT ON
2576	a) $CH_3\underline{C}H = CH_2$	b) CH ₃ CH ₂ NH ₂	c) CH ₃ CONH ₂	d) CH ₃ CH ₂ CN
949	9. Hydrogen fluoride is a liq		halides because:	
		e due to hydrogen bonding		
	b) F ₂ is highly reactive			
	c) HF is the weakest acid			
05/	d) Fluorine atom is the sn	BB 20 10 10 10 10 10 10 10 10 10 10 10 10 10		.,
950	0. The number of sigma (σ)			
051	a) 5, 13	b) 15, 3	c) 13, 5	d) 16, 2
95.	1. In which one of the follow	177		D. Maleina a 60:0
O.F.	a) Boiling of H ₂ O	b) Melting of KCN	c) Boiling of CF ₄	d) Melting of SiO ₂
954	2. Which compound is solub		-) ((()	1) (116)
OF	a) CS ₂	b) C ₂ H ₅ OH	c) CCl ₄	d) CHCl ₃
953	3. A π-bond is formed by sid		a) a m ambitala	d) a m a amhitala
05	a) s-s orbitals4. Which statement is true?	b) <i>p-p</i> orbitals	c) s-p orbitals	d) s-p-s orbitals
954	+. which statement is true?			

a) Absolutely pure water does not contain any ion.		
b) Some covalent compounds may also give ions in	[487] [48] [48] [48] [48] [48] [48] [48] [48	
c) In aqueous solution only electrovalent compound		
d) Very sparingly soluble substances do not dissocia	ate in aqueous solution	
955. Formation of π -bond:		
a) Increases bond length		
b) Decreases bond length		
c) Distorts the geometry of molecule		
d) Makes homoatomic molecules more reactive		920×
956. In which reaction, the hybridisation on the central a		
a) $NH_3 + H^+ \rightarrow NH_4^+$ b) $BF_3 + F^- \rightarrow BF_4^-$	c) $H_20 + H^+ \rightarrow H_30^+$	d) $C_2H_2 + 2H_2 \rightarrow C_2H_6$
957. The low solubility of BaSO ₄ in water is due to:		
a) Low dissociation energy		
b) Ionic bonds		
c) High value of lattice energy		
d) None of the above		
958. The number of lone pairs of electron on Xe in XeOF.	is:	
a) 1 b) 2	c) 3	d) 4
959. Which compound does not contain double bond or	triple bond?	
a) C ₂ H ₄ b) H ₂ O	c) N ₂	d) HCN
960. The compound showing maximum covalent charact	ter is:	
a) BI ₃ b) BCl ₃	c) BF ₃	d) BBr ₃
961. Carbon atoms in $C_2(CN)_4$ are:		
a) sp-hybridised		
b) sp^2 -hybridised		
c) sp - and sp^2 -hybridised		
d) sp, sp^2 and sp^3 -hybridised		
962. Which statement is wrong?		
a) 2nd ionisation energy shows jump in alkali meta	ls	
b) 2nd electron affinity for halogens is zero		
c) Maximum electron affinity exists for F		
d) Maximum ionization energy exists for He		
963. Value of x in potash alum,		
K_2SO_4 . $AI_x(SO_4)_3$. $24H_2O$ is		
a) 4 b) 1	c) 2	d) None of these
964. Among the following, the paramagnetic compound	is	
a) Na_2O_2 b) O_3	c) N ₂ O	d) KO ₂
965. HCl molecule in the vapour state is an example of:		
a) Non-polar bond b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond
966. The electrons in an incomplete outershell are know	n as:	
a) Kernel electrons b) Valency electrons	c) Shell electrons	d) None of the above
967. According to bond order concept the correct order	of stability of O_2 , O_2^+ , and O_2^+	is
a) $0_2 > 0_2^+ > 0_2^-$ b) $0_2^- > 0_2 > 0_2^+$	c) $0_2 > 0_2^- > 0_2^+$	d) $0_2^+ > 0_2 > 0_2^-$
968. The element which exists in both hard and soft form	n is:	
a) Fe b) Si	c) C	d) Al
969. Which of the following is not a correct statement?		
a) Every AB ₅ molecule does in fact have square pyr	amid structure.	
b) Multiple bonds are always shorter than correspo	nding single bonds.	
c) The electron-deficient molecules can act as Lewis	s acids.	
d) The canonical structures have no real existence.		

970.	The bond strength increas	ses:		
	a) With increasing bond of	order		
	b) With increasing extent	of overlapping of orbitals		
	c) With decreasing differen	ence between energies of o	verlapping orbitals	
	d) All of the above			
971.	The number of unpaired e	electrons in ${\rm O}_2$ molecule is:		
	a) Zero	b) 1	c) 2	d) 3
972.	Which has higher bond er	nergy and stronger bond?	<i>a</i>	3500
	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
973.	Which of the following sta	atements regarding carbon	monoxide is correct?	
	a) It involves sp-orbitals	of carbon		
	b) It contains a lone pair of	only on carbon		
	c) It contains a lone pair of	only on oxygen		
	d) In carbonyl, oxygen en	d is attached to the metal a	toms	
974.	Which of the following is	having highest bond length	1?	
	a) NO-	b) NO+	c) CN-	d) CN+
975.	Which of the following sta	ntement is correct for CsBr	3?	
	a) It is a covalent compou	nd		
	b) It contains Cs3+ and Br	ions		
	c) It contains Cs+and Br ₃	ions		
	d) It contains Cs+, Br- and	d lattice Br ₂ molecule		
976.	In 1 - butene number of o	- bonds is		
	a) 8	b) 10	c) 11	d) 12
977.	Which does not have pyra	midal geometry?		
	a) SO ₃ ²⁻	b) NO ₃	c) NH ₃	d) $C(C_6H_5)_3^-$
978.	The nature of bonding in	CCl ₄ and CaH ₂ :		
	a) Electrovalent in both C	Cl ₄ and CaH ₂		
	b) Covalent in CCl4 and el	ectrovalent in CaH ₂		
	c) Electrovalent in CCl ₄ ar	nd covalent in CaH ₂		
	d) None of the above			
979.	Which of the following ox	ides is not expected to reac	ct with sodium hydroxide?	
	a) BeO	b) B ₂ O ₃	c) CaO	d) SiO ₂

CHEMICAL BONDING AND MOLECULAR STRUCTURE

						: ANS	WI	ER K	EY:						
1)	b	2)	b	3)	b	4)	d	157)	d	158)	d	159)	b	160)	
5)	b	6)	b	7)	b	8)	a	161)	d	162)	d	163)	c	164)	
9)	b	10)	b	11)	c	12)	b	165)	c	166)	b	167)	c	168)	
13)	c	14)	a	15)	a	16)	d	169)	c	170)	d	171)	d	172)	
17)	b	18)	c	19)	a	20)	c	173)	a	174)	c	175)	b	176)	
21)	b	22)	a	23)	c	24)	d	177)	d	178)	c	179)	a	180)	
25)	C	26)	d	27)	b	28)	a	181)	b	182)	c	183)	b	184)	
29)	c	30)	a	31)	a	32)	a	185)	b	186)	d	187)	a	188)	
33)	b	34)	d	35)	a	36)	a	189)	b	190)	a	191)	b	192)	
37)	c	38)	c	39)	b	40)	c	193)	d	194)	c	195)	d	196)	
41)	b	42)	d	43)	b	44)	c	197)	b	198)	d	199)	d	200)	
45)	b	46)	a	47)	C	48)	d	201)	c	202)	c	203)	b	204)	
49)	a	50)	c	51)	c	52)	d	205)	d	206)	a	207)	d	208)	
53)	a	54)	c	55)	C	56)	b	209)	a	210)	a	211)	d	212)	
57)	a	58)	b	59)	c	60)	a	213)	b	214)	d	215)	c	216)	
61)	a	62)	a	63)	c	64)	c	217)	a	218)	b	219)	c	220)	
65)	a	66)	a	67)	c	68)	c	221)	b	222)	C	223)	b	224)	
69)	c	70)	a	71)	a	72)	b	225)	d	226)	a	227)	c	228)	
73)	b	74)	a	75)	a	76)	d	229)	C	230)	b	231)	a	232)	
77)	a	78)	c	79)	d	80)	d	233)	d	234)	d	235)	a	236)	
B1)	c	82)	b	83)	c	84)	b	237)	c	238)	d	239)	b	240)	
B5)	b	86)	b	87)	c	88)	b	241)	c	242)	C	243)	a	244)	
89)	d	90)	a	91)	a	92)	c	245)	c	246)	d	247)	C	248)	
93)	d	94)	d	95)	d	96)	b	249)	C	250)	b	251)	d	252)	
97)	c	98)	C	99)	d	100)	c	253)	a	254)	c	255)	b	256)	
101)	c	102)	a	103)	c	104)	d	257)	b	258)	d	259)	b	260)	
105)	c	106)	d	107)	a	108)	b	261)	a	262)	b	263)	b	264)	
109)	a	110)	b	111)	d	112)	a	265)	b	266)	a	267)	d	268)	
113)	a	114)	a	115)	c	116)	a	269)	b	270)	c	271)	d	272)	
117)	a	118)	a	119)	c	120)	c	273)	C	274)	d	275)	a	276)	
121)	a	122)	b	123)	b	124)	c	277)	c	278)	d	279)	a	280)	
125)	d	126)	C	127)	d	128)	b	281)	a	282)	d	283)	b	284)	
129)	b	130)	a	131)	b	132)	d	285)	a	286)	c	287)	a	288)	
133)	c	134)	a	135)	a	136)	d	289)	b	290)	a	291)	c	292)	
137)	a	138)	c	139)	c	140)	c	293)	b	294)	a	295)	b	296)	
141)	d	142)	a	143)	d	144)	a	297)	C	298)	c	299)	c	300)	
145)	d	146)	c	147)	a	148)	a	301)	d	302)	a	303)	c	304)	
149)	c	150)	c	151)	d	152)	a	305)	d	306)	c	307)	d	308)	
153)	c	154)	c	155)	d	156)	d	309)	b	310)	c	311)	a	312)	

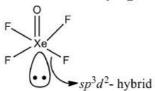
313)	b	314)	a	315)	c	316)	b 51	3)	b	514)	d	515)	d	516)	b
317)	a	318)	b	319)	b	320)	a 51	7)	a	518)	d	519)	a	520)	c
321)	b	322)	b	323)	b	324)	b 52	(1)	a	522)	С	523)	a	524)	b
325)	a	326)	b	327)	a	328)	d 52	(5)	d	526)	a	527)	d	528)	a
329)	b	330)	d	331)	d		b 52	25	d	530)	a	531)	b	532)	a
333)	C	334)	b	335)	d		a 53	33)	b	534)	c	535)	c	536)	d
337)	d	338)	b	339)	b		d 53		a	538)	b	539)	a	540)	c
341)	b	342)	d	343)	b		a 54	1)	a	542)	С	543)	b	544)	a
345)	b	346)	c	347)	d	100 Maria	d 54	(5)	b	546)	b	547)	c	548)	d
349)	b	350)	a	351)	c		b 54		c	550)	c	551)	d	552)	c
353)	b	354)	c	355)	b		d 55	3)	b	554)	a	555)	b	556)	a
357)	a	358)	c	359)	d		b 55	7)	c	558)	a	559)	b	560)	c
361)	C	362)	b	363)	d		0.5200	i 1)	c	562)	b	563)	d	564)	b
365)	a	366)	С	367)	d	0.403	a 56	55)	С	566)	d	567)	b	568)	a
369)	d	370)	С	371)	c		a 56		b	570)	С	571)	b	572)	a
373)	a	374)	a	375)	a		d 57		a	574)	b	575)	b	576)	b
377)	a	378)	d	379)	b		d 57		b	578)	b	579)	b	580)	b
381)	a	382)	d	383)	d		b 58		a	582)	d	583)	b	584)	b
385)	a	386)	a	387)	a	000		35)	С	586)	С	587)	a	588)	a
389)	b	390)	a	391)	c		a 58		С	590)	d	591)	b	592)	b
393)	a	394)	С	395)	c		c 59		С	594)	d	595)	a	596)	С
397)	b	398)	d	399)	d	4003	a 59		С	598)	С	599)	b	600)	b
401)	b	402)	b	403)	b		c 60		b	602)	С	603)	a	604)	b
405)	d	406)	С	407)	b		b 60		a	606)	a	607)	a	608)	a
409)	b	410)	b	411)	c		b 60		d	610)	С	611)	С	612)	c
413)	c	414)	d	415)	d	10.000 (a.g.) 14	b 61		c	614)	b	615)	a	616)	d
417)	c	418)	a	419)	c		b 61		С	618)	c	619)	С	620)	b
421)	d	422)	С	423)	d			(1)	d	622)	a	623)	b	624)	c
425)	a	426)	С	427)	С		b 62		d	626)	d	627)	b	628)	a
429)	b	430)	c	431)	d		a 62		a	630)	b	631)	a	632)	c
433)	d	434)	С	435)	d		b 63	0.00	b	634)	a	635)	С		d
437)	b	438)	c	439)	b		b 63		a	638)	c	639)	d	640)	b
441)	b	442)	С	443)	а		b 64		С	642)	b	643)	a	644)	a
445)	a	446)	c	447)	С		a 64		a	646)	b	647)	c	648)	d
449)	b	450)	С	451)	a		b 64		a	650)	b	651)	a	652)	c
453)	d	454)	a	455)	d	v. 500.00 (1)	b 65		a	654)	b	655)	c	656)	b
457)	c	458)	b	459)	d		d 65		c	658)	d	659)	d	660)	С
461)	b	462)	a	463)	c		c 66	100	c	662)	a	663)	a	664)	b
465)	a	466)	d	467)	d		a 66		a	666)	b	667)	b	668)	d
469)	d	470)	d	471)	d		a 66	9)	d	670)	c	671)	b	672)	d
473)	b	474)	b	475)	c		a 67	73)	b	674)	b	675)	c	676)	d
477)	d	478)	С	479)	a	480)	d 67	77)	b	678)	d	679)	C	680)	d
481)	b	482)	c	483)	d	484)	b 68	31)	a	682)	a	683)	d	684)	c
485)	c	486)	b	487)	b	488)	a 68	35)	c	686)	c	687)	d	688)	a
489)	c	490)	b	491)	d	492)	a 68	39)	b	690)	c	691)	b	692)	b
493)	c	494)	b	495)	c		b 69	3)	d	694)	b	695)	a	696)	b
497)	c	498)	b	499)	c		d 69	7)	a	698)	c	699)	a	700)	d
501)	d	502)	b	503)	b		b 70		b	702)	b	703)	a	704)	d
505)	c	506)	b	507)	c		c 70	25.5	b	706)	b	707)	b	708)	b
509)	c	510)	b	511)	d		a 70		С	710)	c	711)	d	712)	a
1750		15		F.		ñ	ĕ.ª	SF35		<u> </u>		5		350	

713)	b	714)	c	715)	c	716) a	849)	d	850)	a	851)	b	852)	c	
717)	d	718)	a	719)	d	720) d	853)	b	854)	c	855)	b	856)	d	
721)	a	722)	a	723)	a	724) b	857)	b	858)	a	859)	C	860)	d	
725)	d	726)	d	727)	d	728) d	861)	d	862)	b	863)	b	864)	d	
729)	C	730)	b	731)	c	732) c	865)	a	866)	C	867)	b	868)	d	
733)	b	734)	c	735)	b	736) d	869)	a	870)	C	871)	b	872)	d	
737)	b	738)	C	739)	b	740) c	873)	d	874)	b	875)	b	876)	a	
741)	b	742)	a	743)	C	744) b	877)	a	878)	a	879)	d	880)	a	
745)	a	746)	a	747)	a	748) b	881)	d	882)	d	883)	c	884)	a	
749)	b	750)	d	751)	a	752) a	885)	a	886)	c	887)	a	888)	C	
753)	b	754)	C	755)	c	756) b	889)	a	890)	b	891)	d	892)	a	
757)	b	758)	c	759)	a	760) b	893)	c	894)	b	895)	d	896)	c	
761)	b	762)	a	763)	b	764) a	897)	b	898)	C	899)	b	900)	c	
765)	d	766)	d	767)	b	768) d	901)	c	902)	d	903)	d	904)	c	
769)	d	770)	C	771)	b	772) d	905)	a	906)	b	907)	d	908)	d	
773)	b	774)	a	775)	b	776) c	909)	C	910)	C	911)	a	912)	d	
777)	b	778)	C	779)	C	780) a	913)	b	914)	C	915)	d	916)	d	
781)	a	782)	b	783)	a	784) b	917)	d	918)	C	919)	b	920)	c	
785)	a	786)	d	787)	a	788) d	921)	b	922)	b	923)	a	924)	c	
789)	b	790)	b	791)	d	792) a	925)	c	926)	a	927)	d	928)	c	
793)	a	794)	b	795)	b	796) d	929)	d	930)	C	931)	c	932)	d	
797)	a	798)	d	799)	b	800) b	933)	C	934)	b	935)	a	936)	d	
801)	d	802)	C	803)	C	804) b	937)	c	938)	C	939)	d	940)	d	
805)	c	806)	a	807)	a	808) d	941)	d	942)	d	943)	b	944)	c	
809)	a	810)	a	811)	a	812) d	945)	d	946)	d	947)	c	948)	b	
813)	b	814)	a	815)	a	816) a	949)	a	950)	c	951)	d	952)	b	
817)	a	818)	c	819)	a	820) d	953)	b	954)	b	955)	b	956)	b	
821)	C	822)	a	823)	b	824) d	957)	c	958)	a	959)	b	960)	C	
825)	a	826)	b	827)	a	828) c	961)	C	962)	C	963)	C	964)	d	
829)	a	830)	d	831)	a	832) a	965)	c	966)	b	967)	d	968)	c	
833)	b	834)	a	835)	d	836) a	969)	a	970)	d	971)	C	972)	b	
837)	a	838)	b	839)	b	840) c	973)	a	974)	a	975)	c	976)	c	
841)	d	842)	d	843)	a	844) a	977)	b	978)	b	979)	C			
845)	a	846)	a	847)	b	848) d	LI .								

CHEMICAL BONDING AND MOLECULAR STRUCTURE

: HINTS AND SOLUTIONS :

1 **(b)**


Molecule	Hybridizatio
	n
SO_3	sp^2
C_2H_2	sp
C_2H_4	sp^2
CH ₄	sp^3
CO ₂	sp

2 **(b)**

Mg²⁺is smaller thanNa⁺ and thus, smaller is cation more is hydration energy.

3 **(b**

Number of lone pair in $XeOF_4$ is one (1). The structure of $XeOF_4$ is given as follows:

Xe atom in ground state 5s 5p 5d 1 1 1 1 1

Xe in excited state 11 1 1 1 1 1 1

One π -bond so remaining six electron pairs form an octahedron with one position occupied by a lone pair.

4 (d)

These are the factors on which van der Waals' forces depend.

5 **(b**)

It has sp^3d^3 -hybridization with one lone pair on Xe.

6 **(b)**

Bond order $\propto \frac{1}{\text{Bond length}}$

BO of NO<BO of NO+

 \div Bond length of NO is greater than the bond length of NO+.

7 **(b)**

Element with atomic number 20 is metal (Ca); it will combine with non-metal.

8 (a)

A decrease in s-character increases bond length.

10 **(b**)

Calculated dipole moment,

$$\begin{split} \mu_{cal} &= 2.0 \times 10^{-10} \; m \times 1.6 \times 10^{-19} \; C \\ &= 3.2 \times 10^{-29} \; C - m. \end{split}$$

Percentage of ionic character = $\frac{\mu_{exp}}{\mu_{cal}} \times 100$

$$= \frac{5.12 \times 10^{-29}}{3.2 \times 10^{-29}} \times 100 = 16\%$$

11 (c)

 C_2H_4 involves sp^2 -hybridization on carbon atoms.

12 (b)

According to molecular orbital theory.

$$\begin{split} F_2(18) = \ \sigma 1s^2, \, _{\sigma}^* 1s^2 \, , \sigma 2s^2, \, _{\sigma}^* 2s^2, \sigma 2p_z^2 \, , \pi 2p_x^2 \\ \approx \pi 2p_{y,\pi}^2 \, 2p_{x,}^2 \approx \, _{\pi}^* 2p_y^2 \end{split}$$

Bond order in $F_2 = \frac{N_{b-}N_a}{2} = \frac{10-8}{2} = 1$

15 (a

Bond formation is always exothermic. Compounds of sodium are ionic.

16 (d)

In case of water, five water molecules are attached together through four hydrogen bonding

17 (b

Removal of electron is easier in the order of shell 4 > 3 > 2 > 1

18 (c)


Bond order of NO⁺, NO and NO⁻ are 3, 2.5 and 2 respectively.

Bond energy ∝ bond order.

19 (a

FXF angles of two types are present in sp^3d hybrid orbitals. Since, SF₄ shows sp^3d hybridisation as

follows, therefore, it exhibits two different FXF angles.

20 (c)

s-character \propto bond angle

For 25% s character (as in sp^3 hybrid orbital), bond angle is 109.5°, for 33.3% s character (as in sp^2 hybrid orbital),bond angle is 120° and for 50% s character (as in sp hybrid orbital), bond angle is 180°.

Similarly, when the bond angle decreases below 1.9.5°, thes —character will decrease accordingly Decreasing in angle = $120^{\circ} - 109.5^{\circ} = 10.5^{\circ}$

 \therefore Decrease in *s*-character = 33.3 - 25 = 8.3Actual decrease in bond angle = $109.5^{\circ} - 105^{\circ} = 4.5^{\circ}$

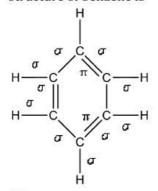
∴ Expected decrease in *s*-character $= \frac{8.3}{10.5} \times 4.5 = 3.56\%$

Thus, the *s*-character should decrease by about 3.56%, *ie*, *s*-character = 25 - 3.56 = 21.44%

21 **(b)**

B has only six electron in B_2H_6 .

22 (a)


Like gets dissolved in like. It is theory.

23 (0

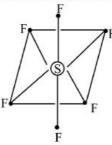
Ionic compounds are good conductor of electricity in molten or in solution state. However, they are bad-conductor in solid state.

24 (d)

In benzene 12σ and 3π bonds are present. The structure of benzene is

25 **(c)**

In CO_3^{2-} ion the C-atom undergoes sp^2 -hybridisation. It has triangular planar structure.


While BF₄, NH₄ and SO₄²⁻ have tetrahedral structure.

26 (d)

PCl₅ has trigonal bipyramid geometry.

27 **(b)**

 ${\rm SF_6}$ has octahedral geometry, sp^3d^2 hybridisation and bond angle is $90^{\rm o}$

% of d-character = $\frac{2 \text{ (no.of } d\text{-orbitals)}}{6 \text{(total hybridised orbitals)}} >$

100

$$= 33\%$$

So, SF_6 are bond angle = 90°

and d-character = 33%.

28 (a)

Head on overlapping give rise to σ -bond formation.

29 (c)

Allene is $CH_2 = C = CH_2$.

30 (a

Silicate ion (Sio_4^{4-}) is the basic structural unit of silicates. Silicates are metal derivatives of silicic acid.

31 (a)

Due to planar equilateral geometry of graphite.

32 (a)

Due to non-availability of d-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4.

33 **(b**)

Cations are always shorter than their parent atom, anion are always larger.

35 (a)

H-bonding is weakest bonding.

36 (a)

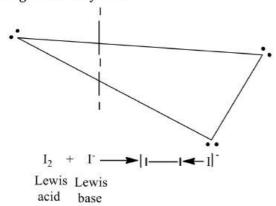
5 of P + 24 of O + 3 of -ve charge = 32.

37 (c)

Benzene has 12σ - and 3π -bonds.

38 (c)

 PF_5 involves sp^3d -hybridization.


9 (h)

 I_3^- ion is made up of an I_2 molecule with an I^- bonded to it by means of a coordinate bond in which I_2 is lone pair acceptor (Lewis acid) and I^-

the lone pair donor (Lewis base). There are two bond pairs and three lone pairs in the outer shell of central atom. To minimize the repulsive forces the three lone pairs occupy the equatorial position. The ion is therefore, linear in shape with a bond angle of exactly 180°.

Similarly, N₃ ion is also linear in shape.

40 (c)

According to M.O. theory, bond order of N_2 , N_2^- and N_2^{2-} are 3, 2.5 and 2 respectively.

- 41 **(b)** e.g., BF₃.
- 42 **(d)**
- Bond order for $H_2^- = +1/2$
- sp-hybridization leads to bond angle of 180°.
- 44 **(c)** $\mu H_2 O \neq 0, \mu_{CO_2} = 0$
- 45 **(b)**

No, of hybrid orbital $=\frac{1}{2}$ [No.of e^- in V-shell of atom + No.of monovalent atoms -charge on cation +charge on anion]

No. of hybrid orbital 2 3 4 5

Type of hybridisation sp sp^2 sp^3 sp^3d 60

Hybridisation in TeCl₄:

No. of hybrid orbital = $\frac{1}{2}[6 + 4 + 0 + 0] = 5$

Hence, $TeCl_4$ shows sp^3d hybridisation.

46 (a)

The stability and bond angle order for hybrids in a group is $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.

47 (c)

Isoelectronic species are those species which have equal number of electrons. Hence, CO_2 is isoelectronic with N_2O .

Number of electron in $CO_2 = 22$

Number of electron in $N_2O = 22$

48 (d)

In BeCl₂, Be atom has incomplete octet.

49 (a)

Greater the charge, smaller the radius, greater the polarising power and thus greater the covalent nature. This leads to increase in lattice energy.

50 (c

The structure, $CH_2 = C = CH_2$ is non-planar with two – CH_2 groups being in planes perpendicular to each other.

52 (d)

Electronegativity increases along the period and decreases down the group.

53 **(a)**

Brass in an alloy.

54 (c)

It is head on overlapping and thus, forms more stronger bond.

55 (c)

H-bonding in molecule gives rise to increase in its b.p.

56 **(b)**

One bonding molecular orbital and one antibonding.

57 (a)

Follow Fajans' rule.

58 **(b)**

Removal of two electrons (one by one) from an atom requires energy = $IP_1 + IP_2$.

59 (c)

The molecular orbital electronic configuration.

$$\begin{array}{l} (\sigma 1s)^2 (\stackrel{*}{\sigma} 1s)^2 (\sigma 2s)^2 \stackrel{*}{(\sigma} 2s)^2 (\sigma 2p_\chi)^2 \\ \left(\pi 2p_y\right)^2 (\pi 2p_z)^2 (\pi 2p_y)^2 \stackrel{*}{(\pi 2p_z)^1} \end{array}$$

Total electrons =17

Hence, this configuration belongs to O_2^- (17 e^-) ion.

60 **(a**)

$$H_3O^+: sp^3 ; NO_3^-: sp^2$$

61 **(a)**

6,6

62 (a)

More is the dipole moment more is ionic nature. $\mu = \delta \times d$; higher is μ , more will be δ on the atom.

63 (c)

Due to sp^3 -hybridization.

55 (a)

Each species has 14 electrons and bond order for each is three.

66 (a)

Among the given choices of compound having oxygen attached to hydrogen will have maximum hydrogen bonding.

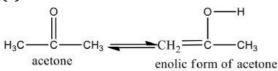
 \because Among CH₃OCH₃, (CH₃)₂C = O, CH₃CHO and C₂H₅OH only C₂H₅OH has oxygen attached to hydrogen atom.

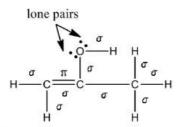
∴ C₂H₅OH shows maximum hydrogen bonding.

67 (c)

It is experimental value.

68 (c)


 O_2^{2+} has 14 electrons. Its electronic configuration is


$$0_2^+: \sigma 1s^2 {}_{\sigma}^* 1s^2$$
, $\sigma 2s^2 {}_{\sigma}^* 2s^2$, $\pi 2p_y^2 \pi 2p_z^2 \sigma 2p_x^2$
Bond order $= \frac{N_{b-}N_a}{2} = \frac{10-4}{2} = 3$

69 (c)

In diamagnetic molecule, all the electrons are paired

70 (a)

Hence, enolic form of acetone contains 9 sigma bonds, 1 pi bond and two lone pairs.

71 (a)

In NO₃ ion, total number of electrons = 7+24+1=32 and in it central atom is sp^2 hybrid. No. of hybrid orbitals = $\frac{V-8B}{2}+B=\frac{24-8\times3}{2}+3$

 $(V \rightarrow \text{total number of electrons in valence shell})$

 $B \rightarrow \text{probability of formation of bond}$

In CO_3^{2-} ion, total number of electrons = 6+24+2=32 and in it central atom is sp^2 hybrid.

No. of hybrid orbital= $\frac{24-8\times3}{2} + 3 = 3$

Hence, NO_3^- and CO_3^{2-} ions are isoelectronic and isostructural.

72 (b)

 $H_2^+ = \sigma 1s^2$ (According to molecular orbital theory)

Bond order =
$$\frac{\text{bonding electrons-antibonding electrons}}{2}$$

= $\frac{1}{2}$ = 0.5

 H_2^+ is paramagnetic due to the presence of one unpaired electron.

73 **(b)**

H-bonding in molecules gives rise to increase in b.p.

74 (a)

Bond distance is in the order:

$$C - C > C = C > C \equiv C$$

$$sp^{3} > sp^{2} > sp$$

75 (a)

% ionic character =
$$16(x_A - x_B) + 3.5(x_A - x_B)^2$$

= $16 \times 2 + 3.5 \times (2^2)$
= 46

 \therefore The % covalent character = 100 - 46 = 54

76 (d)

 ICl_2^- has sp^3d -hybridized state (i. e., trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)

77 (a)

Like gets dissolved in like.

78 (c)

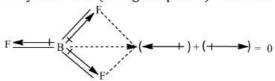
 N_2O is isoelectronic with CO_2 and N_3^- . Hence, its structure is linear.

$$N - N - O$$

79 (d)

H atom attached on N, O, F develops hydrogen bonding molecule.

80 (d


In CCl₄ all bonds of carbon being identical, the molecule is a regular tetrahedron

81 (c

In ${\rm O}^{2-}$ effective nuclear charge is minimum due to more number of electrons and thus the size of ${\rm O}^{2-}$ is maximum.

82 (b)

The zero dipole moment of BF₃ molecule is due to its symmetrical (triangular planar) structure.

84 **(b)**

Bond dissociation energy order:

$$Cl_2 > Br_2 > F_2 > I_2$$

242.6 192.8 158.8 151.1 in kJ mol⁻¹

85 **(b)**

CH₃OH shows H—bonding in liquid state.

86 (b)

They have high electron density.

87 (c)

A coordinate bond is a dative covalent bond in which two atoms form bond and one of them provides both electrons.

$$X: +Y \longrightarrow X: Y \text{ or } X \longrightarrow Y$$

88 **(b)**

C - C bond length in sp^2 hybrid molecule is=

89 (d)

More is electronegativity differences, more is ionic character.

90 (a)

Cation are always smaller than their parent

$$Al^{3+} < Al^{2+} < Al^{+} < Al$$
.

91 (a)

We know that the C - C bond length = 1.54 A, C = Cbond length = 1.34 A and C \equiv C bond length = 1.20 A. Since propyne has triple bond; therefore, it has minimum bond length.

Ionic compounds conduct current in molten state.

Metals are good conductor of electricity because 104 (d) they contain free electrons.

OSF₂ has pyramidal shape

95 (d)

Non-polar species exert van der Waals' forces among themselves.

96 (b)

It has 3σ -and 1π -bond.

 Cl^- has $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

Per cent ionic character is given by % of ionic character.

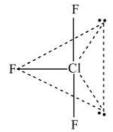
$$= 16(X_A - X_B) + 3.5(X_A - X_B)^2$$

From the above relation, it is clear that as soon as $(X_A - X_B)$ increases, % ionic character will also increase.

Therefore, curve *C* shows a correct path.

$$7Cl=1s^2, 2s^2, 2p^6, 3s^2, 3p_x^2, 3p_y^2, 3p_z^1$$

 $Cl=1s^2, 2s^2, 2p^6, 3s^1, 3p_x^1, 3p_y^1, 3p_z^1, 3d^1, 3d^13d^1$ (3rd excited state)


Chlorine atom, in its third excited state, reacts with fluorine to form CIF7. Its shape is pentagonal bipyramidal.

100 (c)

Anion (0⁻) repels the test electron because of same charge.

101 (c)

Cl in ClF_3 has sp^3d -hybridization

and possesses two axial Cl-F bonds and one equatorial bond. Two lone pairs are at equatorial position give rise to bent 'T' shape to ClF3.

103 (c)

O₂ has one unpaired electron in its antibonding molecular orbital.

 $PCl_3 < PBr_3 < PI_3$, the bond angle order is explained in terms of increasing electronegativity of halogens, whereas, PF₃ > PCl₃, bond angle order is explained in terms of $p\pi$ - $d\pi$ bonding in PF_3 .

105 (c)

 μ experimental = Dipole moment $\times 10^{-18}$ μ theoretical = Bond length $\times 4.8 \times 10^{-10}$ esu × cm

Percentage ionic character = $\frac{\mu_{experimental}}{\mu_{theoretical}} \times 100$

$$= \frac{1.0 \times 10^{-18} \times 100}{1.25 \times 4.8 \times 10^{-10} \times 10^{-8}}$$

106 (d)

CCl4 does not exhibit dipole moment due to its symmetrical structure.

107 (a)

N₂ molecule has 14 electrons. The molecular 118 (a) orbital electronic configuration of the molecule is

$$N_2: KK (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (\pi 2p_x)^2$$

= $(\pi 2p_y)^2 (\pi 2p_z)^2$

N₂ ion is formed when N₂ accept an electron hence it has 15 electrons. The molecular orbital electronic configuration of the molecule is as

$$N_2^-: KK (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (\pi 2p_x)^2 (\pi 2p_y)^2 (\sigma 2p_z)^2 ({}_{\pi}^* 2p_x)^1$$

Hence, this electron goes to antibonding π molecular orbital.

108 (b)

The size of isoelectronic decreases with increase in atomic number.

The bond orders for H_2 , H_2^+ , He_2 and He_2^+ are 1.0, 0.5, 0.0 and 0.5 respectively.

110 (b)

N atom has smallest radius.

111 (d)

The order of screening effect for a given shell electrons is s > p > d > f.

112 (a)

The stability of hydrides decreases down the gp, i.e., from NH3 to BiH3 which can be observed from their bond dissociation enthalpy. The correct order is

$${
m NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3}$$
 Property ${
m NH_3 \ PH_3 \ AsH}$ ${
m \Delta_{diss}H^-(E-H)/kJ\ mol^{-1}}$ 389 322 297

 SF_4 has sp^3d^2 -hybridization and see-saw geometry.

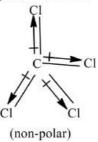
114 (a)

Due to presence of intermolecular hydrogen bonding in H2O, its molecules are associated with each other which results unusual high boiling point of water.

115 (c)

Larger is anion, more is covalent character.

116 (a)

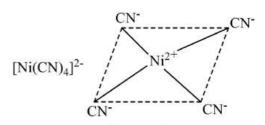

Molecular orbital configuration of,

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^2, \pi 2p_x^2, \pi 2p_y^2, \pi^* 2p$$

Valencies of X, Y and Z is +2, +2 and -2 respectively so, they will form a compound having of formula XYZ_2 .

The molecule in which the bond dipoles of all the bonds are cancel out by each other, is called non polar e.g., CCl₄.

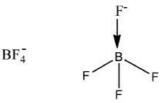
In CCl₄, there is a large difference between the electronegativities of C and Cl but all the four C -Cl bond dipoles cancel each other, hence it is a nonpolar molecule.


119 (c)

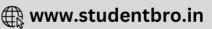
Tetrahedral structure is associated with sp^3 hybridised central atom without any lone pair. The structure of all the compounds given are as follows

XeF4

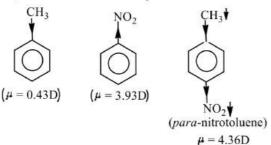
Distorted octahedral



Square planar


SF₄

Distorted trigonal bipyramidal


Tetrahedral

120 (c)

Methyl group has +I effect and $-NO_2$ group has -I effect. Therefore, in p-nitro toluene the dipole moments of $-CH_3$ and $-NO_2$ groups act in the same direction. So, the resultant dipole moment is additive.

i.e., 3.93+0.43=4.36 debye

121 (a)

The tendency to show lower ionic state increases down the group due to inert pair effect.

122 **(b)**

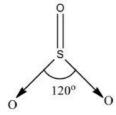
$$CH \equiv C - CH_2 - CH_3$$

$$sp \quad sp \quad sp^3 \quad sp^3$$

In butyne – 1, there is no carbon with sp^2 hybridisation.

123 **(b)**

NO⁺:
$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2\pi_z^2 \end{bmatrix}$
 \therefore B. O. = $\frac{10-4}{2} = 3$


CN⁻:
$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}$
 \therefore B. O. = $\frac{10-4}{2} = 3$

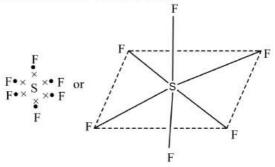
124 (c)

Electron affinity order for halogens is Cl > F > Br > I.

125 (d)

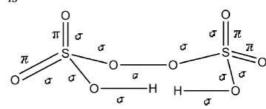
Sulphur trioxide has no S-S linkage. It has triangular planar geometry.

127 (d)


All molecules or ions i.e., H_2O , NH_4^+ , SO_4^{2-} , CIO_4^- , and NH_3 are involved in sp^3 hybridisation in their formation.

129 (b)

p-orbitals always show lateral overlapping.


130 (a)

 ${\rm SF}_6$ does not obey octet rule as in it S-atom has 12 electrons in its valence shell.

131 (b

The structure of peroxodisulphuric acid (H₂S₂O₈) is

Hence, it contains 11σ and 4π -bonds.

132 (d)

Paramagnetic species have unpaired electrons

133 (c)

N in it has three $\sigma\text{-bonds}$ and one lone pair of electron.

134 (a)

Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.

135 (a)

 $\mathrm{NH_3}$ has pyramidal shape and thus, possesses three folds axis of symmetry.

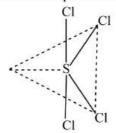
136 (d)

 ICl_2^- has sp^3d -hybridization and has two bond pairs and three lone pairs of electrons.

.37 **(a**

The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is nonpolar even though it contain polar bonds. Methane molecule (CH_4) has zero moment value of dipole moment due to its symmetrical structure.

In $CHCl_3$, the resultant of C-H and C-Cl dipole oppose the resultant of two C-Cl dipoles while in CH_2Cl_2 , the resultant of C-H dipoles adds to resultant of two C-Cl. In case CH_3Cl , the resultant of two C-H dipole adds to the resultant of two C-Cl. In case CH_3Cl the resultant of two C-H dipoles add to the resultant of C-H and C-Cl dipoles.


Thus dipole moment of CH_3Cl is highest among the given compounds. The molecule (CCl_4) again

becomes symmetrical and dipole moment reduces to zero.

138 (c)

S in SCl₄ is sp^3d -hybridized and possesses seesaw structure whereas SiCl₄ is tetrahedral.

139 (c)

Oxygen cannot expand its octet due to absence of *d*-orbitals in its valence shell.

142 (a)

Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, *e.g.*, HCHO has sp^2 -hybridization but angle H—C—H is 116° and angle H—C—O is 122° due to double bond. In BF₃ (sp^2 -hybridization) each angle is of 120° .

143 **(d**)

The shape of carbon dioxide is linear because it has sp hybridisation and bond angle 180°.

$$0 = C = 0$$

144 (a)

Addition of electrons to an atom results an increase in its size.

145 (d)

H₂O is V shaped.

146 (c)

In diethyl ether oxygen undergoes sp hybridisation forming four sp^3 hybrid orbitals.

147 (a)

As soon as the electronegativity increases, ionic bond strength increases

148 (a)

Both are linear.

149 (c)

Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment of NF_3 than NH_3 .

150 (c)

Polarity in a molecule gives rise to an increase in forces of attractions among molecules and thus, more becomes boiling point.

152 (a)

The melting point of naphthalene is minimum because it is non – polar covalent compound and has less melting point.

153 (c)

 ${\rm BF_3}$ is a electron deficient compound. So, it has no lone pair orbital over B atom.

154 (c)

Molecular orbital theory was given by Mulliken.

155 (d)

The trigonal geometry of BF_3 with three vectors $(B \to F)$ acting at 120° leads to zero dipole moment. In NH₃ three vectors $(N \leftarrow H)$ act as 107° along with one lone pair giving dipole moment in molecule.

156 (d)

Proton (H⁺) can only accept a lone pair from donor atom.

157 (d)

Each has 10 electrons

158 (d)

Isomerism is arised due to directional nature of covalent bonding.

159 (b)

 SF_4 has sp^3d -hybridized sulphur atom.

160 (c)

 ${
m SbCl}_5^{2-}$ has sp^3d^2 -and rest all has sp^3d -hybridisation.

161 (d)

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

162 (d)

$$_{22}\text{Ti}: 3s^2, 4s^2 \xrightarrow{IE_1} 3d^2, 4s^1$$
 $_{23}\text{V}: 3d^3, 4s^2 \xrightarrow{IE_1} 3d^3, 4s^1$
 $_{24}\text{Cr}: 3d^5, 4s^1 \xrightarrow{IE_1} 3d^5 \xrightarrow{IE_2 \text{ from hlaf-filled}} \text{maximum}$
 $_{25}\text{Mn}: 3d^5, 4s^2 \xrightarrow{IE_1} 3d^5, 4s^1$

164 (a)

C – Cl bond is more ionic than C – I bond because of the greater difference in electronegativities of C and Cl as compared to that of carbon and iodine. Therefore, C – Cl bond is stronger than C – I bond.

165 (c)

Cl is more electronegative than I.

166 (b)

The solubility of a compound depends upon its hydration enthalpy. If hydration enthalpy exceeds the lattice enthalpy than it is soluble in water. For Ag_2SO_4 , hydration enthalpy is lower than lattice enthalpy, so it is insoluble in water.

167 (c)

Silicon has the tendency to show covalent bonding because of higher IP values.

In $SnCl_2$, Sn has sp^2 hybridisation and hence, has angular shape

169 (c)

The inert gas just after chlorine is argon.

170 (d)

The *d*-orbital involved in sp^3d -hybridization is 183 **(b)**

171 (d)

$$0_2 = \sigma 1 s^2 *_{\sigma} 1 s^2 \sigma 2 s^2 *_{\sigma} 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2$$
$$= \pi 2 p_y^2 *_{\pi} 2 p_{x_i} = *_{\pi} 2 p_{y_i}$$

In O_2^+ , one electron is removed from Na BO for $O_2 = 2$ and for $O_2^+ = 2.5$ Therefore, paramagnetism decreases,

172 (b)

increases.

Intramolecular H-bonding is present in ortho nitrophenol.

174 (c)

According to valence shell electron pair repulsion (VSEPR) theory, the order of repulsive interactions between various electron is

$$lp - lp > lp - bp > bp - bp$$

175 **(b)**

In like atoms, electronegativity difference is zero.

176 (d)

BCl3 has bond angle equal to 120° (trigonal planar). NH₃ and H₂O have sp³ hybridisation but 187 (a) due to the presence of lone pair of electrons, they have bond angle less than 109.28'(NH3 - 107° , $H_2O - 104.5^{\circ}$), As H_3 (sp^3 hybrid) smaller bond angle than NH3 due to less electronegativity of As than N.

177 (d)

 E_{op}° order is Mg > Fe > Cu; more is E_{op}° , more is electropositive character.

178 (c)

O atom possesses two lone pair of electrons.

179 (a)

M.O. configuration of O_2^+ is:

 $\sigma 1 s^2 \sigma^* 1 s^2, \sigma^* 2 s^2 \sigma 2 p^2, \pi 2 p_y^2 \pi 2 p_y^2 \pi^* 2 p_x^1$

Bond order of $O_2^+ = \frac{1}{2}[6-1] = \frac{5}{2}$

M.O. configuration of N_2^+ is:

 $\sigma 1s^2\sigma^*1s^2, \sigma 2s^2\sigma^*2s^2, \pi 2p_v^2\pi 2p_v^2\sigma 2p^1$

Bond order of $N_2^+ = \frac{1}{2}[5-0] = \frac{5}{2}$

180 (c)

No scope for addition in completely filled valence orbitals of inert gases.

181 **(b)**

SeF₄ has distorted tetrahedral geometry while, CH₄ has tetrahedral geometry Speed of electron ≠ speed of light

182 (c)

Butadiene is $CH_2 = CH - CH = CH_2$.

37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).

184 (c)

In methane bond angle is 109°28'. Methane molecule is tetrahedral in structure.

185 (b)

Cs is metal and solid.

186 (d)

BO

- 1. Glycerol has strong hydrogen bonding due to presence of 3 - OH groups in it. It is correct statement.
- 2. Alkyl halides have lower boiling point than alcohols because alcohols have stronger forces of attraction between the hydrogen bonds as compared to weaker van der Waals' forces between molecules of alkyl halide.

: Statement (d) is false.

Ionic radii=
$$\frac{n^2 a_0}{Z_{\text{eff}}}$$

188 (c)

Only those atomic orbitals combine, that have nearly equal energy

189 (b)

The stability of the ionic bond depends upon the lattice energy which is expected to be more between Mg and F due to +2 charge on Mg atom

190 (a)

Smaller is anion, lesser is its polarization.

191 (b)

$$B_{(G.S.)} = \frac{2s}{4} = \frac{2p}{4}$$

sp2- hybridisation

Boron has planar structure due to sp^2 hybridisation.

192 (c)

NO⁻(16). According to MOT.

$$\sigma 1s^2, \, {}^*_{\sigma} 1s^2 \, , \sigma 2s^2, \, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, \, \begin{cases} \pi p_y^2 \\ \pi 2 p_z^2 \\ \\ \frac{\pi}{\pi} 2 p_y^2 \\ \frac{\pi}{\pi} 2 p_z^2 \end{cases}$$

Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{2}$ = $\frac{10-6}{2}$ = 2

4. NO⁺(14).

$$\sigma 1s^2$$
, ${}_{\sigma}^*1s^2$, $\sigma 2s^2$, ${}_{\sigma}^*2s^2$, $\sigma 2p_x^2$, ${}_{\pi 2p_x^2}^2$, Bond order $=\frac{10-4}{2}=3$

5. NO (15)

$$\sigma 1s^2, \ _{\sigma}^* 1s^2 \ , \sigma 2s^2, \ _{\sigma}^* 2s^2, \sigma 2p_x^2, \begin{cases} \frac{\pi 2p_y^2}{\pi 2p_x^2}, \\ \frac{\pi}{\pi} 2p_y^2, \\ \frac{\pi}{\pi} 2p_y^2 \end{cases}$$

Bond order = $=\frac{10-5}{2} = 2.5$ (iv)NO²⁺(13).

$$\sigma 1s^2$$
, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\sigma 2p_x^2$, ${\pi 2p_y^2 \over \pi 2p_z^2}$,

Bond order =
$$=\frac{9-4}{2}=2.5$$

6. $NO^{2-}(17)$

$$\sigma 1s^2, \, {}^*_{\sigma} 1s^2 \, , \sigma 2s^2, \, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, \, \left\{ \begin{smallmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \\ \frac{\pi}{\pi} 2p_y^2 \\ \frac{\pi}{\pi} 2p_z^2 \end{smallmatrix} \right.$$

Bond order = $=\frac{10-7}{2} = 1.5$

The order of bond order is $NO^{2-} < NO^- < NO^{2+} \approx NO < NO^+$

193 (d)

Cl is more electronegative than Br.

194 (c

Boron in $[BF_4]^-$ has regular tetrahedral geometry because of sp^3 -hybridization on boron atom.

195 (d)

Usually symmetrical molecules have less dipole moment in comparison to unsymmetrical molecules.

Hence, NO₂ (*m*-nitroaniline) has the highest dipole moment among the given.

196 (a)

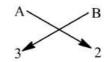
Thus, excitation of 2s-electron in N is not possible.

197 (b)

 ${
m PF}_5$ has sp^3d hybridization (trigonal bipyramid); ${
m BrF}_5$ has sp^3d^2 hybridization (square pyramidal)

198 (d)

In ${\rm NH_3}\ sp^3$ hybridisation is present but its shape becomes pyramidal due to the presence of one lone pair of electron.


199 (d)

Higher the lattice energy lower the solubility. Out of the four combinations possible, the lattice energy of MgS (bi-bivalent ionic solid) is higher than those of $\rm Na_2S$, $\rm MgCl_2$ (uni-bivalent or biunivalent ionic solids) and $\rm NaCl$ (uni-univalent ionic solids) and hence, MgS is the least soluble.

200 (b)

A three electrons in its outermost orbit, its valency is 3. B has six electrons in its outermost orbit, its valency is 2

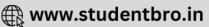
Element

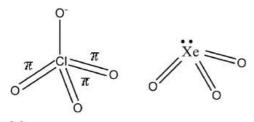
Valency

Formula of the compound = A_2B_3

201 (c)

A reason for the given fact.


202 (c)


In NH $_3$, sp^3 -hybridization is present but bond angle is $106^\circ45'$ because nitrogen has lone pair of electrons, according to VSEPR theory due to bp- and lp repulsion, bond angle decreases from $109^\circ28'$ to $106^\circ45'$

203 (b)

 ClO_4^- and XeO_3 both contain $3d\pi - p\pi$ bonds

204 (c

Spec ies	Structure	lp	bp	VSE PR	Bond angle
	s	2	2	lp	90°
H_2S	H /	H 1	3	-lp	107°
	••	0	3	lp	120°
	N	0	4	-bp	109°28"
NH_3	H			bp	
	H			-bp	
BF ₃	_F	ā		lр	
рг3	F-B			- bp	
SiH ₄				bp	
SIII4) `F			-bp	
	H			- <i>bp</i>	
				bp	
	.si	н			
				- <i>bp</i>	
	H `H			hm	
				bp 	
	I	1		-bp	

Thus, bond angle $H_2S < NH_3 < SiH_4 < BF_3$.

205 **(d**)

The pyramidal structure of covalent molecule AB_3 is as :

No. of lone pair = 1

No. of bond pair =3

207 (d)

 d^2sp^3 -leads to octahedral geometry.

209 (a)

A molecule is said to possess a three-fold axis of symmetry if on rotation around this axis through an angle of 360/3, *ie*, 120°, gives the same arrangement of atoms. Since NH₃ has a pyramidal geometry, therefore, it has a three fold axis of symmetry

210 (a)

Proton number does not change in ion formation, though number of electrons and size change during this.

211 (d)

Valence bond theory (Resonance theory) of metallic bond was given by Pauling (1937). According to this theory, the metallic bonding is essentially covalent in origin and metallic structure exhibits resonance of electro-pair bonds between each atom and its nearest neighbours. In other words, there is a resonance of a large number of canonical forms.

212 (c)

Notice configuration of N+, C+, O+ and F+.

213 (b)

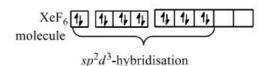
 ${
m CIF_3}$ has sp^3d hybridisation. Out of five sp^3d hybrid orbitals two are completely filled by lp and three are half filled which overlap with three $2p_z$ half filled orbitals of three F-atoms. Due to the presence of two lps its geometry is bent T-shaped.

214 (d

These are characteristics of resonance.

215 (c)

$$0_2^{2-}: \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2 \sigma 2p^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \pi^* 2p_y^2$$


B.O. =
$$\frac{10-8}{2}$$
 = 1

$$B_2 : \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2 \begin{bmatrix} \pi 2p_y^1 \\ \pi 2p_z^1 \end{bmatrix}$$

B.O. =
$$\frac{6-4}{2}$$
 = 1

216 (c)

In the formation of XeF_6 molecule, three 5 p electrons are promoted to 5d orbitals. Now, one 5s, three 5p and three 5d-orbitals of Xe atom intermix together and form seven sp^3d^3 hybrid orbitals. One sp^3d^3 hybrid orbital contains one lone pair of electrons while other six are half-filled. The expected geometry is pentagonal bipyramidal.

Shape: Pentagonal bipyramidal

217 (a)

$$CaC_2 \rightleftharpoons Ca^{2+} + C_2^{2-}$$

Carbide ion

In carbide ion, two carbon atoms are joined by

(If is isoelectronic with N2)

$$-C \equiv C -$$

with two π and one σ -bonds.

218 (b)

 H_2O has sp^3 -hybridization.

219 (c)

e. g., BF₃, a non-polar molecule having sp^2 hybridization.

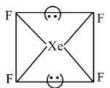
220 **(b)**

When there is less difference in electronegativities of two atoms (but electronegativities are not same) and large difference in their size, polar covalent bond forms.

H and Br: Small difference in electronegativities and large difference in size. Hence, form polar 234 (d) covalent bond.

Na and Br: large difference in electronegativities, hence electrovalent bond is formed.

221 (b)


The bond order for O_2^{2-} , O_2^{-} , O_2^{-} , O_2^{+} are 1.0, 1.5, 2.0, 2.5 respectively. Higher is bond order, more is bond energy.

222 (c)

In XeF₄, the central atom, Xe, has eight electrons in 237 its outermost shell. Out of these four are used for forming four σ-bonds with F and four remain as lone pairs.

∴ XeF_4 ⇒ 4 σ bonds + 2 lone pairs

 \Rightarrow 6 bybridised orbitals, i. e., sp^3d^2 hybridisation Since, two lone pairs of electrons are present, the geometry of XeF4 becomes square planar from octahedral.

223 (b)

Bond order = $\frac{1}{2}$ [no. of bonding electrons – no. of antibonding electrons]

224 (c)

H-bonding is noticed in molecules having H atom attached on N, O or F.

225 (d)

F is more electronegative.

226 (a)

s-orbitals always lead head on overlapping.

228 (a)

According to molecular orbital theory, π -bonding orbital are ungerade.

229 (c)

Basic character of hydrides is NH₃ > PH₃.

CO2 has sp-hybridization.

231 (a)

Bond angles decrease on moving down the group for similar compounds, i. e., $NH_3 > PH_3 > AsH_3 >$

232 (a)

Ionic compounds break into their constituent ions when dissolved in water.

Carnallite is double salt having composition, KCl. MgCl₂. 6H₂O. It gives K⁺, Cl⁻ and Mg²⁺ ions when dissolved in water.

An increase in s-character give rise to an increase in bond strength.

235 (a)

In rest all dipole-dipole forces also exist.

236 (c)

Among the isoelectronic species smaller is +ve charge, larger is ionic radius, e.g.,

Ionic radius: $Na^+ > Mg^{2+} > Al^{3+}$

1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H-bonding.)

Order of H-bonding in o, m and p-isomers of a compound is given below

Intermolecular H-bonding, o < m < p-isomers intermolecular H-bonding

o > m > p isomers.

Hydroxy benzene do not form a chain of H-bonding . Hence, intermolecular H-bond is stronger than intermolecular H-bonds, so the stability of 1, 4dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound is

IV < I < II < III

238 (d)

Molecules in trans-1, 2-dichloroethene symmetrical hence, no dipole moment.

 sp^3d^2 -hybridization leads to octahedral geometry.

In BF₃,boron is sp^2 hybridised, so its all atoms are coplanar

241 (c)

Since, the geometry of AsF₅ molecule is trigonal bipyramidal, it is sp^3d hybridised. Thus, s, p_x , p_y , p_z and d_{z^2} orbitals are utilised by As atom from 250 (b) bonding.

242 (c)

Molecular orbital configuration of N₂⁺ is

$$\begin{aligned} N_2^+ &= (\sigma 1s)^2 \binom{*}{\sigma} 1s)^2 (\sigma 2s)^2 \binom{*}{\sigma} 2s)^2 \left(\pi 2 p_y\right)^2 \\ &= (\pi 2 p_z)^2 (\sigma 2 p_x)^1 \\ \text{Bond order} &= \frac{N_{b^-} N_a}{2} = \frac{9-4}{2} = 2.5 \end{aligned}$$

243 (a)

Structure of C2H2 is linear.

$$H-C \equiv C-H$$

Structure of CO2 is also linear

$$O = C = O$$

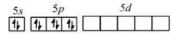
So, both are isostructural species.

244 (c)

In o-dichlorobenzene, $\alpha = 60^{\circ}$

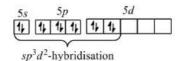
$$\therefore \cos \alpha = +ve$$

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos\alpha}$$


245 (c)

Multiplicity of bonds gives higher bond energy.

Bond order of oxygen molecule = 2Bond order of oxygen molecule ion = 2.5Bond order of superoxide ion $(0_2^-) = 1.5$ Bond order of peroxide ion $(O_2^{2-}) = 1$ Hence, the order of bond strength is as $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$


247 (c)

Electronic configuration of Xe in ground state

Electronic configuration of Xe in excited state

Electronic configuration of Xe in XeF4

Note The expected geometry of XeF₄ is octahedral. On account of the fact that *lp-lp* repulsion > *lp-bp* repulsion, there is some distortion octahedral geometry with two lone pair of electrons. In other words, it has a square planar geometry.

248 (b)

$$\text{Li}_2$$
: $KK(\sigma 2s)^2$, $BO = \frac{1}{2}(2-0) = 1$

Hence, structure of Li2 is [Li - Li].

More directionally concentrated orbitals show more overlapping.

251 (d)

It is the hybridization of ICl₂⁺.

252 (b)

o-, m-, p-derivatives has $\alpha = 60^{\circ}$, 120° and 180° and thus, resultant vector has zero dipole moment in p-derivative. Also dipole moment of mdichlorobenzene is more than toluene.

253 (a)

Covalent character α charge of cation

254 (c)

Carbon cannot accept 6Cl-, since it has no vacant d-orbitals.

255 (b)

Cs⁺ is largest cation and F⁻ is smallest anion.

256 (b)

Charge of
$$e^- = 1.6 \times 10^{-19}$$

Dipole moment of HBr =
$$1.6 \times 10^{-30}$$

Inter-atomic spacing =
$$1 \text{ Å}$$

$$= 1 \times 10^{-10} \text{ m}$$

Percentage of ionic character in HBr

$$= \frac{\text{Dipole moment of HBr} \times 100}{\text{inter spacing distance} \times q}$$

$$= \frac{1.6 \times 10^{-30}}{1.6 \times 10^{-19} \times 10^{-10}} \times 100$$

$$= 10^{-30} \times 10^{29} \times 100$$

$$= 10^{-1} \times 100$$

$$= 0.1 \times 100$$

$$= 10\%$$

257 (b)

Lower IE, more EA and high lattice energy are required conditions for ionic bonding.

258 (d)

Ionisation potential increases along the period.

259 (b)

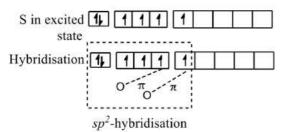
More is *s*-character, smaller is hybridized orbital, more becomes tendency for overlapping, more is bond energy, lesser is bond length.

260 (c)

Larger is the difference in electronegativities of two atom, more is polar character in bond.

261 (a)

The molecules having no difference in electronegativity of bonded atoms are non-polar in nature. They are molecules having same atoms.


 \therefore Among HCl, HF, HBr and H₂. H₂ is non-polar molecule.

262 (b)

In SO_2 molecule, S is sp^2 -hybridised.

$$S(16) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^4$$

S in ground
$$3s$$
 $3p$ $3d$ S in ground $3d$ $3d$

263 (b)

The size of isoelectronic species increases with decrease in effective nuclear charge.

264 (d)

Bond order for He2 is zero.

265 (b)

CsF is ionic compound.

266 (a)

Isoelectronic species have same number of electrons

267 (d)

Ionic character=
$$16(E_A - E_B) + 3.5(E_A - E_B)^2$$

= $16(4 - 1.2) + 3.5(4 - 1.2)^2$
= 72.24%

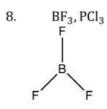
268 (d)

During the formation of chemical bond energy decreases

269 **(b)**

$$K_4 \text{Fe}(CN)_6 \rightarrow 4K^+ + \text{Fe}(CN)_6^{4-}$$

270 (c)



Tetrahedral (sp³ hybridisation)

Sec-saw structure $(sp^3d \text{ hybridisation})$

: Both have different structure.

Trigonal planar $(sp^2d \text{ hybridisation})$

Pyramidal structure $(sp^3d$ hybridisation)

: Both have different structure.

9. XeF_2, CO_2

Trigonal bipyramidal

Pentagonal bipyramidal

: Both have different structure.

10.
$$PF_5, IF_7$$

 $F \longrightarrow Xe \longrightarrow F$ $O \longrightarrow C \longrightarrow O$
Linear Linear

- : Both have linear structure.
- : They have same structure.

271 (d)

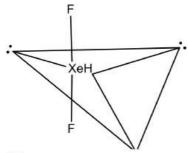

Covalent union between two unlike atoms gives rise to the formation of a polar covalent bond in which shared pair of electron shifted towards more electronegative atom. This gives rise to equal but opposite partial charges on two ends. HCl shows polar covalent bond.

272 (b)

Rest all either has incomplete (BF₃, BeF₂) octer or expanded octet (ClO₂).

274 (d)

CO, CN⁻ and NO⁺ all the three species have 14 electrons.

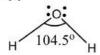

According to MOT

$$\sigma1s^2$$
 , $_\sigma^*1s^2$, $\sigma2s^2$, $_\sigma^*2s^2$, $\sigma2p_x^2(\pi2p_y^2=\pi2p_z^2)$ Bond order = $\frac{10-4}{2}=3$

Similarly bond order for $O_2^+ = 2.5$

275 (a)

XeF₂ molecule contains two bond pairs and three lone pairs in the outer-shell of central atom and thus its hybridisation is sp^3d^2 but to minimise the repulsive forces the three lone pairs occupy the equatorial position and the molecule becomes linear shape.


276 (c)

Species having the same number of electron, have same bond order.

Species	Number of electrons
CN-	6+7+1=14
0-	8+8+1=17
NO ⁺	7+8-1=14
CN-	6+7-1=12

Since, CN⁻ and NO⁺ have same number of 285 (a) electrons, they have same bond order, i. e., 3. NO+ $\sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $\sigma 2p_z^2$, $\sigma 2p_x^2 \approx \pi 2p_y^2$ Bond order = $\frac{N_{b-}N_a}{2}$ $=\frac{10-4}{2}=3.$

277 (c)

In water molecule the H - O - H bond angle is 104.5° and dipole moment is 1.84 D.

The bond angle of H₂O is lower than 109.28" due to the presence of two lone pair of electrons on the oxygen atom.

278 (d)

Follow text.

279 (a)

RCH2NHCH3 shows the hydrogen bonding, since H is attached to N atom.

280 (c)

Cl atom has 17 electrons, Cl⁻ ion has 18 electrons.

281 (a)

High boiling point. of water is due to dipole-dipole interaction.

282 (d)

Ionisation enthalpy increases along the period and decreases down the group.

283 (b)

The jump in IP values exist in IP5 and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

284 (a)

Paramagnetic species has unpaired electron.

$$\mathbf{B}_2=5+5=10~\sigma 1s^2,\, _\sigma^* 1s^2$$
 , $\sigma 2s^2,\, _\sigma^* 2s^2$, $\pi 2p_x^1$
$$=\pi 2p_y^1$$

$$C_2 = 6 + 6 = 12$$

= $\sigma 1s^2$, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\pi 2p_x^2$
= $\pi 2p_y^2$

$$N_2 = 7 + 7 = 14 = \sigma 1s^2$$
, ${}_{\sigma}^* 1s^2 \sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\pi 2p_x^2$
= $\pi 2p_y^2$, $\sigma 2p_z^2$

$$\begin{split} &F_2 = 9 + 9 = 18 \\ &= \sigma 1 s^{2, *} {}_{\sigma} 1 s^2 , \sigma 2 s^{2, *} {}_{\sigma} 2 s^2 , \sigma 2 p_z^2 , \pi 2 p_x^2 \\ &= \pi 2 p_y^2 , {}_{\pi}^* 2 p_x^2 = {}_{\pi}^* 2 p_y^2 \end{split}$$

: B2 is paramagnetic because it has unpaired electron.

 $Na \rightarrow Na^+ + e$; IE of Na = +ve $Na^+ + e \rightarrow Na$; $EA \text{ of } Na^+ = -ve$ Both are equal but opposite in nature.

286 (c)

(a)
$$CH_4 \rightarrow CH_3 - CH_3$$

 $4bp + 0lp \qquad 4bp \qquad 4bp$
Hybridisation $sp^3 \qquad sp^3 \qquad sp^3$
Structure tetrahedral tetrahedral

(b) NH_3 \rightarrow NH₄⁺

$$3bp + 1lp$$
 $4bp$

 sp^3 Hybridisation sp^3

Structure pyramidal tetrahedral

(c)
$$BF_3 \rightarrow BF_4^-$$

 $3bp \rightarrow 4bp$

Hybridisation sp^2 sp^3

Structure trigonal tetrahedral planar

(d)
$$H_2O \rightarrow H_3O^+$$

 $2bp + 2lp \qquad 3bp + 1lp$
Hybridisation $cn^3 \qquad cn^3$

Hybridisation $sp^3 sp^3$

Structure angular pyramidal

Thus conversion of BF₃ into BF₄ involves change in both hybridisation and shape.

287 (a)

In O₂ molecule, the total number of electrons = 16 Electronic distribution in molecular orbital of O₂ = $\sigma 1s^2$, $^*_{\sigma}1s^2$, $\sigma 2s^2$, $^*_{\sigma}2s^2$, $\sigma 2p_x^2$ ($\pi 2p_y^2$, $\pi 2p_z^2$), ($^*_{\pi}2p_y^1$, $^*_{\pi}2p_z^1$)

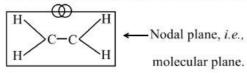
Bond order in $O_2 = \frac{1}{2}[N_{b-}N_{a}] = \frac{1}{2}[10-6] = 2.0$ In $O_2^+ = \sigma 1s^2$, ${}_{\sigma}^*1s^2$, $\sigma 2s^2$, ${}_{\sigma}^*2s^2$, $\sigma 2p_x^2$ $(\pi 2p_y^2 = \pi 2p_z^2)$, $({}_{\pi}^*2p_y^1)$

Bond order in
$$O_2^+ = \frac{N_{b-}N_a}{2} = \frac{10-5}{2} = 2.5$$

288 (a)

Percentage ionic character

$$= \frac{\text{experimental value of DM}}{\text{theoretical value of DM}} \times 100$$


$$= \frac{1.03}{6.12} \times 100 = 17\%$$

289 (b)

Electron affinity decreases down the group, but 'O' has small atomic size and 2p-orbital becomes very compact and already has 6 electrons, hence, there is a repulsive force among the already present and added electrons. Some of the energy evolved, due to addition of electron, is used to reduce the repulsion. Hence, the E.A. of O is less than S, so the order is S > O > Se.

290 (a)

A π -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

291 **(c**)

Electronegativity of elements increases along the period and decreases down the group.

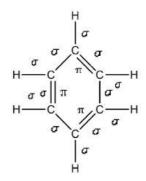
292 (b)

In CO_2 , C-atom is sp-hybridised, thus it has linear structure. In XeF_2 , Xe is sp^3d hybridised with three lone-pairs of electrons on equatorial position. This minimises repulsion, hence it has also linear structure.

293 (b)

Structure of CO_2 is linear due to sp-hybridisation. (sp)

$$0 = C = 0$$


294 (a)

Higher the bond order short the bond length O_2^{2+} has the shortest the bond length (BO=3) Bond order of remaining species are : $O_2^+(2.5)$, $O_2^-(1.5)$ and $O_2^{2-}(1)$

295 (b)

11. The first bond between any two atoms is σ and rest are π bonds.

12. π bond is formed by sideways overlapping of unhybridised p-orbital.

Each carbon has 3σ and 1π -bond.

 \therefore All carbon atoms of C_6H_6 are sp^2 hybridised.

296 (d)

Nearer to 25%, the angle is $109^{\circ}28'$ for sp^3 -hybridization.

297 (c) $KHF_2 \rightarrow K^+ + HF_2^-$.

298 (c)

Intramolecular H—bonding in salicyl aldehyde prevents its test with $FeCl_3(aq)$.

299 (c)

Stronger is metallic bonding (Fe has *d*-subshell), more is hardness.

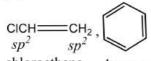
300 (d)

 $\begin{array}{ccc} \text{Compound} & \text{Bond angle} \\ \text{NH}_3 & 107^\circ \\ \text{PCl}_3 & 93^\circ \\ \text{BCl}_3 & 120^\circ \end{array}$

301 (d)

In propyne there are 2 $\pi-\mbox{bonds}$ and six sigma bonds.

 $CH_3C \equiv CH$


302 (a)

Like atoms results in covalent bonding leading to the formation of non-polar bond, e. g., H—H or H $_2$.

304 (d)

chloroethene benzene all car

all carbon atoms are

 sp^2 hybridised chloroethene

$$CH_2 = CH - CH = CH_2$$

 $sp^2 sp^2 sp^2 sp^2$
 $CH_2 = CH - CH = CH - CH = CH_2$
 $sp^2 sp^2 sp^2 sp^2 sp^2$
1, 3, 5-hexatriene

305 (d)

If the lattice energy < hydration energy, then only ionic compounds are soluble.

306 (c)

 BCl_3 has equilateral triangular shape leading to vector sum of polar bonds to zero.

307 (d)

Hybride: H_2O H_2S H_2Se H_2Te Bond angle: 104° 92° 91° 90°

In all of the given species central atom is sp^3 hybridised. They have angular shape due to the presence of two lone pair of electron. The bond angle decreases with decrease in electronegativity therefore H_2 Te shows minimum bond angle.

308 (d)

Lattice energy \propto charge of ions $\propto \frac{1}{\text{size of ions}}$

309 (b)

He₂⁺, H₂⁻ have 3 electrons, one must be unpaired. H₂⁺ has one unpaired electron. H₂ has two (paired) electrons.

310 (c)

Among the given, only CH₃OH and CH₃NH₂ are able to form H-bonds but H-bonding

in ${\rm CH_3OH}$ due to high electronegativity of O-atom is strong. Hence, ${\rm CH_3OH}$ has the highest boiling point.

311 (a)

$$(\sigma - bps + 1ps = 3 + 1 = 4)$$

In NF $_3$ N-atoms is sp^3 -hybride, but due to presence of a lone pair of electron, NF $_3$ has pyramidal structure.

312 (d)

The boiling point of ethanol is highest among these due to the presence of hydrogen bonding.

313 **(b**)

 C_2^{2-} has $[C \equiv C]^{2-}$ structure.

314 (a)

A compound having maximum electronegative element will form strong hydrogen bond

315 (c)

The bond angle in ${\rm CH_3OCH_3}$ is 110° inspite of sp^3 -hybridization of O and two lone pair due to stearic hindrance.

316 (b)

Multiplicity in bonding give rise to an increase in bond energy.

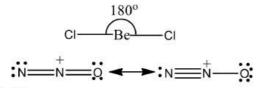
317 (a)

Carbon in H_2CO_3 has sp^2 -hybridization and also polar. BF_3 has sp^2 but non-polar. SIF_4 has sp^3 -hybridization. $HClO_2$ has sp^3 -hybridisation.

318 (b)

The removal of second electron from Mg takes place from 3s-orbital whereas, the removal of second electron from Na takes place from 2p-orbital. More closer are shells to the nucleus, difficult is removal of electron.

319 (b)


Bond angle depends on the structure of molecule. If two molecules have same structure, then bond angle is decided by the electronegativity of central atom. Electrongeativity of central atom \propto bond angle.

The bond angle of H_2S is less than H_2O because S is less electronegative than H_2O .

Hence,
$$H_2O > H_2S$$

Further the $BeCl_2$ has linear structure, hence its bond angle is 180° . The N_2O molecule also has linear structure with bond angle 180° .

320 (a)

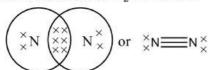
S has 6 electrons in its the valence shell and it shares 6 electrons with 6 fluorine atoms.

∴ In SF₆, S has 12 electrons in its valence shell

322 (b)

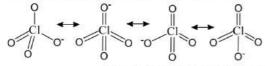
 ${
m NH_3}$, ${
m [PtCl_4]^{2-}}$, ${
m PCl_5}$ and ${
m BCl_3}$ have sp^3 , dsp^2sp^3d and sp^2 hybridization respectively. Note that hybridization of P in ${
m PCl_5}$ is wrongly reported in problem.

323 (b)


The bond formation process is exothermic and thus resultant acquires lower energy level.

324 **(b)**

Due to H-bonding in NH₃.


325 (a)

Lewis structure of N2 molecule is

326 (b)

The resonating structure of ClO₄ are as

 \Rightarrow Bond order = $\frac{\text{Total number of bonds between Cl and O}}{\text{Total number of resonating structure}}$

$$=\frac{7}{4}=1.75$$

327 (a)

Bond energy increases with increase in bond order.

328 (d)

Ionisation potential increases along the period.

329 (b)

CsCl is most ionic because of most electropositive nature of Cs.

330 (d)

$$0_2 < 0_2^-$$

Bond order

$$C_2 = 2$$

$$C_2^{2-} = 3$$

$$B_2 = 2$$

$$B_2^+ = 1.5$$

$$Li_2 = 1$$

$$Li_2^+ = 0.5$$

$$N_2 = 3$$

$$N_2^+ = 2.5$$

$$0_2 = 2$$

$$0_2^- = 1.5$$

331 (d)

The molecular configuration of O_2^- is as $\sigma 1s^2$, ${}_{\sigma}^*1s^2$, $\sigma 2s^2$, ${}_{\sigma}^*2s^2$, $\sigma 2p_z^2$, $\pi 2p_v^2$

$$\approx \pi 2p_z^2, {}_{\pi}^* 2p_x^2 \approx {}_{\pi}^* 2p_y^2$$

Bond order =
$$\frac{N_b - N_a}{2}$$
$$= \frac{10 - 8}{2}$$

∴ Bond order = 1

332 (b)

It is an ionic compound. The most ionic compound is CsF.

333 (c)

CO₂ is linear molecule.

334 (b)

M.O. configuration of N_2 is:

$$\sigma 1s^2 \sigma^* 1s^2$$
, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_v^2$, $\pi 2p_z^2$, $\sigma 2p_x^2$

M.O. configuration of N₂⁺ is:

$$\sigma 1s^2 \sigma^* 1s^2$$
, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_v^2$, $\pi 2p_z^2$, $\sigma 2p_z^1$

335 (d)

In NH₄⁺ ion, N is sp^3 hybridised therefore, bond angle in NH₄⁺ (tetrahedral shape) is 109°28′.

336 (a)

The definition of bond order.

338 (b)

The intermolecular forces increase with increases in mol. wt.

339 (b)

Bond angles of BeF_2 , H_2O , NH_3 and CH_4 are 180° , $104^\circ31'$, $106^\circ50'$, $109^\circ28'$ respectively.

340 (d)

Bond length decreases with increase in *s*-character.

341 (b)

Isoelectronic species have same number of electrons, NO^+ , C_2^{2-} , CN^- and N_2 . All have 14 electrons.

342 (d)

 sp^3d^2 hybridised molecule have octahedral geometry.

343 (b)

R-0-H ... H-0-H

344 (a)

The shape of ${\rm ClF_3}$ is distorted T-shape due to the presence of two lone pair of electrons.

345 (b)

These are facts.

346 (c)

 NO_2^- has sp^2 hybridisation. Its expected geometry is trigonal planar but actual geometry is V-shape due to presence of lone pair of electrons.

347 (d)

Cs⁺ is biggest ion among these. F⁻ is smallest.

348 (d)

Formation of solid lattice from oppositely charged ionized gaseous atoms give rise to evolution of lattice energy.

349 (b)

We know that Al³⁺ cation is smaller than Na⁺ (because of greater nuclear charge). According to Fajan's rule, small cation polarise anion upto greater extent. Hence, Al³⁺ polarise Cl⁻ ions upto greater extent, therefore, AlCl₃ has covalent bond between Al and Cl atoms.

350 (a)

$$H-O-O-H$$
, $O-O=O, O=O$

Due to resonance, in O_3 , the O-O bond length will be in between O=O and O-O

352 **(b**)

Bond order for $O_2 = 2$ and for $O_2^+ = 2.5$ Both are paramagnetic (O_2 has 2 unpaired electron, O_2^+ has one unpaired electron).

354 (c) $[0-0]^{2-}$

355 (b)

For sp^2 hybridization, bond angle is 120° In sp^2 hybridization,

s character = $\frac{1}{3} \times 100 = 33\%$

356 (d)

 ClF_3 has sp^3d -hybridization with two lone pair of electron on Cl.

357 (a)

13. $O_2 = 8 + 8 = 16$

= $\sigma 1s^2$, $^*_{\sigma}1s^2$, $\sigma 2s^2$, $^*_{\sigma}2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$, $(^*_{\pi}2p_x^1 = ^*_{p}2p_y^1)$

: It has 2 unpaired electrons.

: It is paramagnetic.

14.
$$CN^- = 6 + 7 + 1 = 14$$

$$= \sigma 1s^2$$
, $_{\sigma}^* 1s^2$, $_{\sigma}^2 2s^2$, $_{\sigma}^* 2s^2$, $_{\sigma}^2 2p_z^2$, $_{\sigma}^2 (\pi 2p_x^2 = \pi 2p_y^2)$

: No unpaired electron and no paramagnetic.

15.
$$CO = 6 + 8 = 14$$

$$=\sigma 1s^2$$
, $_{\sigma}^*1s^2$, $_{\sigma}2s^2$, $_{\sigma}^*2s^2$, $_{\sigma}2p_z^2$, $(\pi 2p_x^2=\pi 2p_y^2)$

: No unpaired electron and no paramagnetic.

16.
$$NO^+ = 7 + 8 - 1 = 14$$

$$=\sigma 1s^2 *_{\sigma} 1s^2$$
, $\sigma 2s^2$, $_{\sigma} 2s^2$, $_{\sigma} 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2=\pi 2p_y^2)$

: No unpaired electron and not paramagnetic.

358 (c)

C—F bond is more polar than C—Cl.

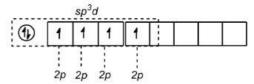
359 (d)

Ionic compounds conduct current only in fused state.

360 (b)

 IP_1 of $B > IP_1$ of Li ENC of boron is more than Li. Also IP_1 of Li $> IP_1$ of K because removal of electron in K occurs from 4s.

361 **(c)**


It is a fact.

363 (d)

O has two lone pair of electrons.

364 (a)

In SF_4 , S has sp^3d -hybridisation. Thus, it contains two axial and two equatorial bonds to give seesaw structure.

365 (a)

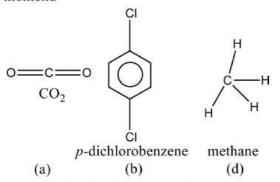
F₃Cl has 10 electrons on Cl atom. A superoctet molecule means for expanded octet on an atom.

366 (c)

S₂ molecule is paramagnetic like O₂ having 2 unpaired electrons.

368 (a)

 π -bonding occurs only after σ -bond is formed.


369 (d)

 NH_4^+ and SO_4^{2-} both show sp^3 hybridisation and tetrahedral geometry

370 (c)

Dipole moment is a vector quantity. The dipole moment of symmetrical molecule is zero. Only the molecule which has distorted shape has dipole moment.

- \because CO₂, p -dichlorobenzene and CH₄ have regular symmetrical shape.
- : They don't have dipole moment.

 $\ensuremath{\text{NH}_3}$ has distorted structure due to presence of lone pair of electron.

: It has dipole moment.

371 (c)

According to Fajan's rule smaller anion is polarised to lesser extent than the larger anion.

- : compound having smaller anion has more ionic character.
- : Higher melting

Since, the size of F⁻ ion is smallest, it is polarised.

- : AgF will have highest ionic character and hence highest melting point.
- (: Ionic compounds have greater melting point than covalent compound)

372 (a)

Number of hybrid orbitals for neutral atom = $\frac{1}{2}$

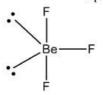
[Number of valence electron in central atom + Number of monovalent atom]

Number of hybrid orbital = $\frac{5+5}{5}$ = 5

Hence, hybridisation is sp^3d .

374 (a)

The size of isoelectronic decreases with increase in atomic number.


375 (a)

Bond angle for sp, sp^2 and sp^3 -orbitals are 180°, 120° and 109°28′ respectively.

378 (d)

In ${\rm BrF_3}$ molecule, ${\rm Br}$ is sp^3d hybrid, but geometry is T-shaped due to distortion of geometry from trigonal-bipyramidal to T-shaped by the involvement of lone pair-lone pair repulsion.

$$lp - lp$$
 repulsion = 0
 $lp - bp$ repulsion = 4
 $bp - bp$ repulsion = 2

Here

379 (b

As the distance between the atoms, increases, bond polarity increases

380 (d

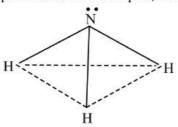
 EA_1 for elements is exothermic and EA_2 is endothermic. Also EA_2 for $0 > EA_1$ for 0.

381 (a

$$\begin{aligned} & 0_{2}^{-} = 8 + 8 + 1 \\ &= \sigma 1 s^{2}, \, {}_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2}, \, {}_{\sigma}^{*} 2 s^{2}, \, \sigma 2 p_{z}^{2}, \, \pi 2 p_{x}^{2} \\ &= \pi 2 p_{y}^{2}, \, {}_{\pi}^{*} 2 p_{x}^{2} = {}_{\pi}^{*} 2 p_{y}^{1} \end{aligned}$$

∴ Total antibonding electrons = 7

$$\begin{array}{l} 0_2 = 8 + 8 = 16 \\ = \sigma 1s^2, \ _{\sigma}^* 1s^2 \ , \sigma 2s^2, \ _{\sigma}^* 2s^2, \sigma 2p_z^2 \ , \pi 2p_x^2 = \\ \pi 2p_y^2 \ , \pi 2p_x^1 = \ _{\pi}^* 2p_y^1 \end{array}$$


∴ Total antibonding electrons = 6

$$\begin{aligned} 0_2^{2^-} &= 8 + 8 + 2 = 18 \\ &= \sigma 1 s^{2, *} {}_{\sigma}^* 1 s^{2, *} \sigma 2 s^{2, *} {}_{\sigma}^* 2 s^{2, *} \sigma 2 p_z^2 , \pi 2 p_x^2 \\ &= \pi 2 p_y^2 , {}_{\pi}^* 2 p_x^2 = {}_{\pi}^* 2 p_y^2 \end{aligned}$$

: Total antibonding electrons = 8

382 (d)

In NH_3 , N undergoes sp^3 hybridisation. Due to the presence of one lone-pair, it is pyramidal in shape.

383 (d)

Hg exists in liquid state.

384 (b)

According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.

385 (a)

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

386 (a)

The dipole moment of two dipoles inclines at an angle θ is given by the equation $\pi =$

 $\sqrt{x^2 + y^2 + 2xy \cos \theta}$, $\cos 90 = 0$, since, the angle increases from 90 - 180, the value of $\cos \theta$ becomes more and more -ve and hence resultant decreases. Thus, dipole moment is maximum, when, $\theta = 90^{\circ}$

387 (a)

$$\begin{aligned} \text{CO}(14) &= \ \sigma 1s^2, \ _{\sigma}^* 1s^2 \ , \sigma 2s^2, \ _{\sigma}^* 2s^2, \pi 2p_y^2 \\ &= \ \pi 2p_z^2, \sigma 2p_x^2 \\ \text{BO} &= \frac{N_{b^-} N_a}{2} = \frac{10^{-4}}{2} = 3 \\ \text{NO}^-(16) &= \\ \sigma 1s^2, \ _{\sigma}^* 1s^2 \ , \sigma 2s^2, \ _{\sigma}^* 2s^2, \sigma 2p_x^2, (\pi 2p_y^2 = \pi 2p_z^2), \\ _{\pi}^* 2p_y^1 &= \ _{\pi}^* 2p_z^1 \end{aligned}$$

$$BO = \frac{10 - 6}{2} = 2$$

$$N0^+(13); B0=3$$

$$CN^{-}(14); BO = 3$$

$$N_2(14); B0 = 3$$

Hence, bond order of NO is different from that of CO.

388 (a)

S atom in SF₆ is sp^3d^2 -hybridized state and shows 400 (a) octahedral shape.

389 (b)

The stability of carbonates increases with increasing electropositive character of metal.

Larger is the size of atom, lesser is the tendency for overlapping, lesser is bond energy.

392 (a)

The polarising ability is characteristic of cation, smaller the size of cation with large magnitude of positive charge, more will be its polarising ability. (: It can cause large distortions in anion cloud.)

393 (a)

ClO₂ has 33 electrons, i. e., one unpaired.

394 (c)

Larger anion is polarized more (Fajans' rule).

395 (c)

The molecules having distorted geometry have dipole moment and those having regular geometry have zero dipole moment.

- : NH₃, CH₃Cl and ClO₂ have distorted geometry.
- : They have dipole moment.
- : BF3 has regular triangular planar geometry.

The dipole moment of BF3 is zero.

396 (c)

When hydrogen forms hydrogen bonding with fluorine it will be strongest H-bonding because fluorine is strongest electronegative element.

397 (b)

Trans 2-pentene has dipole moment.

$$C = C$$
 $C + C$
 $C + C$
 $C + C$
 $C + C$

Because +I effect of ethyl group is more than that of CH3 group, hence the two dipoles do not cancel each other.

398 (d)

NH₂ has sp³-hybridization having two covalent bonds and two lone pair of N atom.

399 (d)

The solubility of a compound mainly depend upon its hydration energy. If the hydration energy of a compound is greater than from its lattice enthalpy, then its is soluble in water. Thus, for solubility

Hydration enthalpy > lattice

enthalpy

For compounds P and R hydration enthalpy exceeds the lattice enthalpy, so they are soluble in water.

It is a fact derived from bond order.

401 (b)

I has maximum covalent bond and negative charge on electronegative nitrogen, most stable. III has more covalent bond than both II and IV, III is second most stable. Between II and IV, II is more stable since it has negative charge on nitrogen while IV has negative charge carbon.

402 **(b)**

Hybrid orbitals never form π -bond.

404 (c)

$$\begin{aligned} O_2(16) &= \sigma 1 s^2, \, {}_{\sigma}^* 1 s^2, \sigma 2 s^2, \, {}_{\sigma}^* 2 s^2, \sigma 2 p_z^2, \pi 2 p_x^2 \\ &\approx \pi 2 p_y^2, \, {}_{\pi}^* 2 p_x^1 \approx {}_{\pi}^* 2 p_y^1 \end{aligned}$$

$$BO = \frac{10 - 6}{2} = 2$$

$$0_2^{2-}(18) = \sigma 1s^2, \, {}_{\sigma}^* 1s^2, \, \sigma 2s^2, \, {}_{\sigma}^* 2s^2, \, \sigma 2p_z^2, \, \pi 2p_x^2$$

$$\approx \pi 2p_y^2, \, {}_{\pi}^* 2p_x^2 \, \approx \, {}_{\pi}^* 2p_y^2$$

$$BO = \frac{10 - 8}{2} = 1$$

$$N_2(14) = \sigma 1s^2$$
, ${}_{\sigma}^*1s^2$, $\sigma 2s^2$, ${}_{\sigma}^*2s^2$, $\pi 2p_x^2$
 $\approx \pi 2n_x^2$, $\sigma 2n_y^2$

$$BO = \frac{10-4}{2} = 3$$

Thus, bond order is highest for N2.

405 (d)

Molecular shapes of SF_4 , CF_4 , XeF_4 are different with 1, 0 and 2 lone pair or electrons respectively.

406 **(c)**

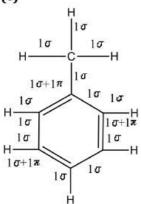
The correct sequence of hybridisation of methane, ethene and ethyne is sp^3 , sp^2 and sp.

407 (b)

Diamond has a three-dimensional structure in which a large number of carbon atoms are arranged tetrahedrally by covalent bonds. It is an allotropic form of carbon.

408 (b)

The ionisation potential decreases down the group.


409 (b)

 BeH_2 molecule is linear because it has sp-hybridisation. It has bond angle 180° .

410 (b)

 $Be_2(\sigma 1s^2,\sigma^*1s^2,\sigma 2s^2,\sigma^*2s^2)$ has bond order equal to zero.

411 (c)

 15σ and 3π - bonds are present in toluene.

412 **(b)**

In H₂O, H-atom contains only two electrons.

413 (c)

Both HgCl₂ and C₂H₂ are linear like CO₂ because of *sp*-hybridization.

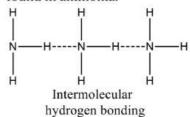
414 (d)

Follow concept of bond order in M.O. theory.

415 (d)

$$HC \equiv C - HC = CH - CH_3 10\sigma, 3\pi$$

416 **(b**)


 $CCl_2 = CCl_2$ has sp^3 -hybridization. CCl_4 has sp^3 -hybridization.

417 (c)

All are non-metals.

419 (c)

Boiling point of ammonia is much higher than phosphine. It is due to extensive hydrogen bonding found in ammonia.

420 (b)

Lower potential energy level imparts stability.

421 (d)

Covalent character
$$\propto \frac{1}{\text{size of cation}}$$

 $\propto \text{size of anion}$

(according to Fajan's rule)

Lower the covalent character, higher will be ionic character.

Cl2O, contains O2-, NCl3 contains N3-

, PbCl₂ contains Pb²⁺ and BaCl₂ contains Ba²⁺.

Hence, the order of covalent character is

$$NCl_3 > Cl_2O > PbCl_2 > BaCl_2$$

: BaCl2 has the greatest ionic character.

422 (c)

Kernals start vibrating and hence, create hindrance in the flow of electrons

423 (d)

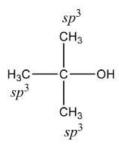
Chile salt petre (NaNO $_3$), potash alum (K $_2$ SO $_4$.Al $_2$ (SO $_4$) $_3$.24H $_2$ O) and green vitriol (FeSO $_4$.7H $_2$ O) are ionic compounds. They produce ions in their aqueous solutions, so they are conducting in nature. Ethyl alcohol, C $_2$ H $_5$ OH being covalent in nature, does not produce any ion in aqueous solution. Hence, it is non-conducting in nature.

424 (c)

Due to large electronegativity difference in C and F atoms.

425 (a)

Proteins show H-bonding.


426 (c)

Bond angles decreases down the group.

 \therefore H₂O > H₂S. Also bond angle of H₂O < NH₃ due to lone pair effect.

427 (c)

In the above compound all bonds are σ bond and hence, carbon atom uses only sp^3 - hybrid orbitals for bond formation.

428 **(b)**

It is the order of stability.

429 (b)

 E_1 for He⁺ = E_1 for $H \times Z^2$ (where Z=at. no. of He).

430 (c)

H-bonding order:

$$\cdots$$
 H - F > \cdots H - O > \cdots H - N

431 (d)

The charge-size ratio increases and thus polarizing power increases.

434 (c)

O2 has two unpaired electrons.

435 (d)

These are the factors on which IP depends.

436 (b)

The hybridised states of N in NO_2^+ , NO_3^- and NH_4^+ are sp, sp^2 and sp^3 respectively.

437 (b)

Carbon (1) has 2σ – and 2μ – bonds. Carbon (2) has 3σ and 1π -bond.

438 (c)

According to Fajan's rule, as the size of cation decreases, its polarising power increases. Hence, $\mathrm{Cu^{2+}}$ polarise $\mathrm{Cl^{-}}$ ions more than $\mathrm{Cu^{+}}$. Therefore, $\mathrm{CuCl_{2}}$ has more covalent character and hence, its boiling point is less.

439 (b)

Metals are more electropositive and lose electrons, while non – metals have tendency to gain electron.

440 **(b)**

Be has smallest size and thus, Be cation possesses more polarizing power.

441 (b)

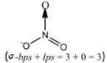
Due to intermolecular hydrogen bonding in *ortho*isomer, it has least melting point. Due to effective intermolecular hydrogen bonding in *para* isomer, it has highest melting point among the isomers. So, the order is

Para isomer > meta > ortho

443 (a)

Based on geometry of molecule.

444 (b)


The structure of these molecules/species are as follows:

 $(\sigma - bps + lps = 3 + 0 = 3)$

sp²-hybridisation trigonal planar sp²-hybridisation pyramidal

$$\bigcup_{O \cap O}^{C} O$$

$$(\sigma - bps + lps = 3 + 0 = 3)$$

sp2-hybridisation trigonal planar sp2-hybridisation trigonal planar

 PCl_3 has sp^3 -hybridisation but due to presence of a lone-pair, its shape is pyramidal instead of tetrahedral.

446 (c)

[C] forms anion readily by gaining one electron only.

447 (c)

Number of bonds between two atoms is called bond order.

Resonating structures of benzene are

 \therefore In benzene, the carbon – carbon bond is between the double and single bond due to the resonance, so its bond order is 1.5.

448 (a)

If difference in electronegativity in between two atoms is 1.7, the molecule possesses 50% covalent +50% ionic nature.

449 (b)

 IP_1 of Pb > IP_1 of Sn (an exception).

450 (c)

Only then it can accept lone pair in that shell.

451 (a)

Count σ -and π -bonds.

452 (b)

The molecular electronic configuration of O_2 is $O_2 = [KK, (\sigma 2s)^2, ({}^*\sigma 2s)^2, (\sigma 2p_x)^2, (\pi 2p_y)^2]$

=
$$(\pi 2p_z)^2$$
, $({}_{\pi}^* 2p_y)^1 = (\pi 2p_z)^1$]

453 (d)

Cs is more electropositive.

454 (a)

In MnO $_4^-$, the oxidation no. of Mn is +7, *i. e.*, all the 4s and 3d electrons are lost.

455 (d)

456 (b)

Charge of
$$e^- = 1.6 \times 10^{-19}$$
C

Dipole moment of HBr = 1.6×10^{-30} C-m

Interionic spacing = $1 \text{ Å} = 1 \times 10^{-10} \text{m}$

% of ionic character in

$$\begin{aligned} \text{HBr} &= \frac{\text{Dipole moment of HBr} \times 100}{\text{Interspacing distance } \times q} \\ &= \frac{1.6 \times 10^{-30} \times 100}{1.6 \times 10^{-19} \times 10^{-10}} \end{aligned}$$

457 (c)

Due to shielding effect of (n-1)d-subshell.

 $= 10^{-30} \times 10^{29} \times 100 = 0.1 \times 100 = 10\%$

459 (d)

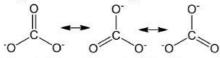
P in PO_4^{3-} has sp^3 -hybridization like S in SO_4^{2-} .

460 (d)

The lattice becomes stronger (i.e., the lattice energy $\it U$ becomes more negative). As $\it r$ the interionic distance decreases. $\it U$ is proportional to

 $\frac{1}{r}$

or


$$U \propto \frac{1}{(r_c + r_a)}$$

462 (a)

Covalent radius are always smaller than crystal radius as the former involves overlapping region.

463 (c)

CO₃²⁻ has the following structure

It contains only covalent bonds

464 (c)

Molecular orbital configuration of,

$$C_2^+ = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_x^2, \pi 2p_y^1$$

466 (d)

Mullikan proposed M.O. theory.

467 (d)

 $Cl_2O = 42$ electrons

 $ICl_2^- = 88$ electrons

 $Cl_2^- = 35$ electrons

 $IF_2^+ = 70$ electrons

 $I_3^- = 160$ electrons

 $Cl_2O = 33$ electrons

 $ClO_2^- = 34$ electrons

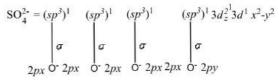
 $ClF_2^+ = 34$ electrons

 ClO_2^- and ClF_2^+ contain 34 electrons each hence they are isoelectronic.

468 (a)

1, 2-butandiene has the structure.

469 (d)


Anions are always larger in size than their parent atom. Cations are always smaller in size than their parent atom.

470 (d)

Sulphade ion $(S0_4^{2-})$ has tetrahedral geometry, as in S-atom undergoes sp^3 hybridisation.

S in II excited state =

1111111

Tetrahedral shape of SO₄²

471 (d)

 SF_4 has sp^3d -hybridization with one lone pair, CF_4 has sp^3 -hybridization with no lone pair and XeF_4 has sp^3d^2 -hybridization with two lone pairs.

472 (a)

H H H
$$(\sigma-bps+lps=3+1=4)$$

Hence, hybridisation= sp^3

In NH_3 N-atoms is sp^3 hybridised, but due to presence of a lone pair of electron on N-atom. It is pyramidal in shape.

473 (b)

For a compound to be soluble, the hydration energy must be greater than the lattice energy. Since, NaCl is soluble in water but insoluble in benzene.

 $\Delta H_{
m hydration} > \Delta H_{
m lattice\ energy\ in\ water}$

and

 $\Delta H_{\text{hydration}}$

 $<\Delta H_{
m lattice\ energy\ in\ benzene}$

474 (b)

Dimerization occurs in carboxylic acids which indicates strong H-bonding.

475 (c)

$$H \xrightarrow{\sigma} C \xrightarrow{\Xi} C \xrightarrow{\sigma} C \xrightarrow{\sigma} \left| \begin{array}{c} H \\ \sigma \\ \overline{1} \overline{\pi} \end{array} \right| C \xrightarrow{\sigma} H$$

Thus, the number of σ and π bonds respectively are 7 and 3

476 (a)

Solubility order : AgF > AgCl > AgBr > AgI.

477 (d)

 ${
m CaI_2}$ has maximum covalent character due to large size of anion and possesses lowest lattice energy. Thus melting point is lowest.

478 (c)

Hybridisation= $\frac{1}{2}$ [no. of electron in valence shell + no. of monovalent atoms-charge on cation+ charge on anion]

17. H₂O

$$H = \frac{1}{2} (6 + 2 + 0 - 0) = \frac{8}{2} = 4$$

∴ sp3hybridisation

18. CH₄

$$H = \frac{1}{2} (4 + 4 + 0 - 0)$$

$$=\frac{8}{2}=4$$

 $\therefore sp^3$ hybridisation

19. BCl₃

$$H=\frac{1}{2}(3+3+0-0)$$

$$=\frac{6}{2}=3$$

 $\stackrel{.}{.} sp^3 \\ hybridisation$

20. NH₃

$$H=\frac{1}{2}(5+3+0-0)$$

$$=\frac{8}{2}=4$$

∴ sp3hybridisation

∴ (c) is correct answer.

479 (a)

H₂O shows high b.p. (inspite of lowest mol. wt.) on account of strong H-bonding.

480 (d)

C₂H₂ is a linear molecule with sp-hybridization.

481 (b)

KO2 is an ionic compound.

482 (c)

In all the given compounds, anion is same(Cl⁻), hence polarising power is decided by size and charge of cation. Al³⁺ with maximum charge and smallest size has maximum polarising power hence, AlCl₃ is maximum covalent.

483 **(d)**

Dipole forces exist only in polar molecule.

484 (b)

Both possess sp^2 -hybridization but different geometry.

485 (c)

In transition elements, penultimate shell electrons also participate in bonding.

486 (b)

Species O_2 O_2^+ O_2^{2+} O_2^{2+} O_2^{2-} Bond Order 2 2.5 3 1

Hence, the increasing bond order is as follows:

 $0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$

487 **(b)**

 $\pi 2p_x$ and $\pi 2p_y$ or $^*_{\pi \, 2p_x}$ and $^*_{\pi \, 2p_y}$ orbitals have nearly equal energy and thus, are called degenerate orbitals.

488 (a)

The most electronegative element is F and next to F is O.

489 (c)

Ions are held in NaCl by coulombic forces and thus, possess no velocity.

490 **(b)**

Both have one lone pair of electron.

491 (d)

Lattice energy, $U = \frac{q_1 q_2}{r^2}$

Since, interionic distances in CaO and NaCl are similar, (larger cation has smaller anion and vice versa) r is almost the same. Therefore, lattice energy depends only on charge. Since, the magnitude of charge on Na⁺ and Cl⁻ ions is same ie, unity and that on Ca²⁺ and O²⁻ ions is 2 each,

therefore, the lattice energy of CaO is four times the lattice energy of NaCl, *ie*,4U

492 (a)

Hence, carbon atom bonded to each other by single (C - C) are sp and sp^2 hybrid.

493 (c)

In IF₅, halogens are member of VII group. Summation of group number

= 42
Bond pair =
$$\frac{42}{8}$$
 = 5(Residue) 2
Lone pair = $\frac{2}{2}$ =1

5 bond pair, 1 lone pair means the geometry is square pyramidal and sp^3d^2 hybridisation.

494 (b)

 PCl_5 molecule has sp^3 d hybridiation. Its geometry is trigonal bipyramidal and it has 5 valence shell pairs of electrons.

495 (c)

Given, ionic charge =
$$4.8 \times 10^{-10}$$
 esu and, ionic distance = $1 \text{ Å} = 10^{-8}$ cm

We know that

Dipole moment =ionic charge×ionic distance

$$= 4.8 \times 10^{-10} \times 10^{-8}$$

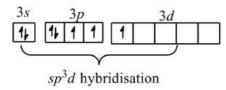
= 4.8×10^{-18} esu cm⁻¹

= 4.8 debye

496 (b)

 ${\rm CH_2}={\rm CH_2}$ has 1σ -and 1π -in between two sp^2 -hybridized carbon.

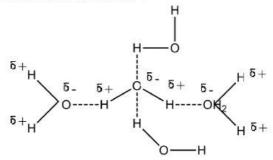
497 (c)


S in SF₄ possesses trigonal bipyramidal structure with sp^3d hybridisation.

S in ground state

S in ground state

S in excited state


S in excited state

499 (c)

Atomic size decreases along the period and increases down the gp.

500 (d)

One water molecules is joined to four water molecules—two with H—atoms and other two with O—atoms. Thus, The maximum number of hydrogen bonds that a molecule of water can have is four as shown below:

501 (d)

CH₃⁺ and NH₂⁺ both have 8 electrons.

503 (b)

Energy level order 2p > 2s.

504 **(b)**

Be in BeF $_3^-$ is sp^2 -hybridized

505 (c)

RbO₂ means Rb⁺ and O₂⁻, O₂⁻ is the superoxide ion.
O₂⁻(17) =
$$\sigma$$
1s², ${}_{\sigma}^{*}$ 1s², σ 2s², ${}_{\sigma}^{*}$ 2s², σ 2p_z², π 2p_z²
 $\approx \pi$ 2p_y², ${}_{\pi}^{*}$ 2p_z², $\approx {}_{\pi}^{*}$ 2p_y¹

As it contains one unpaired electron, thus paramagnetic in nature.

506 (b)

A reason for the given fact.

507 (c)

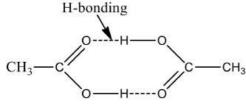
Sulphanilic acids have dipolar structure to their melting point is high and insoluble in organic solvent

509 (c)

Atomic size of Ag and Au are closer to each other but nuclear charge is more on Au.

511 (d)

BCl₃ has trigonal planar structure due to 3 bond pairs in the valence shell of boron whereas NCl₃ has distorted tetrahearal structure due to one lone pair and three bond pair in the valence shell of nitrogen.


512 **(a**)

In AlH₃, Al is sp^2 hybridised while in AlH₄, Al is sp^3 hybridised.

513 (b)

 CH_3COOH dimerises in gaseous state due to H-bonding.

514 (d)

It is the definition of electron affinity.

516 **(b**)

 SO_2 has sp^2 -hybridization.

517 (a)

One of s-orbital +3 of p-orbital = sp^3

518 (d)

NO(7 + 8 = 15)
=
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$
 $\approx \pi 2p_y^2$, $\pi^* 2p_x^1$
NO⁺(7 + 8 - 1 = 14)
= $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$

Thus, in the formation of NO⁺ from NO, the electron is removed from a π^* orbital

519 (a)

2nd IE_1 of alkali metals is abnormally higher.

520 (c)

For Be_nAl₂Si₆O₁₈

$$2n + 6 + 24 - 36 = 0$$

 $n = 3$

521 (a)

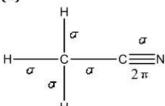
The structure of an hydride of H₂SO₄ is:

$$0 = \begin{cases} 1\sigma & 1\sigma \\ 0 = 1\pi \\ 1\sigma & 1\pi \end{cases}$$

522 (c)

O atom possesses sp^3 -hybridization with two lone pair of electron.

523 (a)


Ionic bonds are non-directional.

524 **(b)**

The molecule of N_2O is linear as would be expected for a triatomic molecule with 16 outer shell electrons. Its resonance structure is

525 (d)

Hence, number of σ and π -bond in acetonitrile are 5 and 2 respectively.

526 (a)

More the difference in electronegativity of atoms, stronger will be the hydrogen bond. :: Electronegativity difference between H and F is highest.

(:F has highest electronegativity)

: F - H - - - - 0 hydrogen bond is strongest.

527 (d)

Cyanide ion is,

$$-\bar{C} \equiv N \longrightarrow -\bar{N} \equiv C.$$

528 (a)

- 21. dsp^3 or sp^3d hybridisation results in trigonal bipyramidal geometry according to VSEPR theory.
- 22. dsp^2 hybridisation has square planar geometry.
- 23. d^2sp^3 or sp^3d^2 hybridisation has octahedral planar geometry.

529 (d)

Bond angles of

$$NH_3 = 107^{\circ}, H_2Se = 91.0^{\circ}, H_2O = 104.5^{\circ}, H_2S$$

= 92.2°

So, the H₂Se molecule has smallest bond angle.

530 (a)

;o: /\

The H bond angle in H_2O is 104.5° due to the presence of two lone pairs of electrons. This fact can be best explained with the help of valence shell electron pair repulsion (VSEPR) theory.

531 (b)

$$egin{array}{lll} {
m NO}_{2}^{-} & sp^{2} \\ {
m NO}_{3}^{-} & sp^{2} \\ {
m NH}_{2}^{-} & sp^{3} \\ {
m NH}_{4}^{+} & sp^{3} \\ {
m SCN}^{-} & sp \end{array}$$

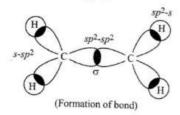
533 **(b)**

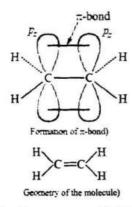
 $K^+[C \equiv N]^-$; K^+ and CN^- ionic, C and N forms covalent bonds.

534 (c)

NaCl exist as Na+Cl-.

535 (c)


 $\rm C_2H_2$ has a linear structure because it has $\it sp$ hybridisation.


$$H - C \equiv C - H$$

536 (d)

Structure of C2H4 is

So, the compound (X) is C_2H_4 .

537 (a)

Ionization energy increases along the period and decreases down the group.

538 (b)

The atomic radius decreases along the period. Also cations are always smaller than their parent atom and anions are always larger than their parent atom.

539 (a)

In N_2 , all electrons are paired. Thus, N_2^+ has one electron unpaired.

540 (c)

Mo lec ule	Hyb ridi sati on	Repulsion	Bond angle
SO ₂	sp^2	lp.bp, bp – bp	119°
OH_2	sp^3	lp – lp, bp – lp bp – bp	104.5
SH_2	sp^3	-do-	
NH_3	sp^3	lp – bp, bp – bp	90°
	000		107°

541 (a)

CO₂ is isostructural with N₂O because both have linear structure.

$$0 \underline{\hspace{-0.05cm}} \hspace{-0.05cm} C \underline{\hspace{-0.05cm}} \hspace{-0.05cm} C \underline{\hspace{-0.05cm}} \hspace{-0.05cm} N^{+} \underline{\hspace{-0.05cm}} \overset{\overset{\scriptstyle \bullet}{\hspace{-0.05cm}}}{\hspace{-0.05cm}} N^{+} \underline{\hspace{-0.05cm}} N^{+} \underline$$

542 (c)

Valencies of L, Q, P and R is-2,-1,+1, and +2 respectively. So, they will form P_2L , RL PQ, and RQ_2

$$NO \rightarrow NO^{+}$$

$$(N0^{+})$$
 Total $e^{-} = 14$

$$\sigma 1s^2$$
, $_{\sigma}^*1s^2$, $\sigma 2s^2$, $_{\sigma}^*2s^2$, $\pi 2p_x^{1+1} = \pi 2p_y^{1+1}\sigma 2p_z^2$

Diamagnetic

Bond order =
$$=\frac{10-4}{2}=3$$

(NO) Total
$$e^{-} = 15$$

$$\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2 , \sigma 2p_z^2 \pi 2p_x^{1+1} \pi 2p_y^{1+1}, {}^*_{\pi} 2p_x^1$$

$$= {}^*_{\pi} 2p_y$$

Paramagnetic

Bond order =
$$=\frac{10-5}{2} = 2.5$$

Electron is taken away from non-bonding molecular orbital that's why bond order increases.

544 (a)

All are isoelectronic species; more is nuclear charge smaller is ionic size.

545 **(b)**

Bond order for $O_2=2$; $O_2^+=2.5$, $O_2^-=1.5$, $O_2^{2-}=1$ Thus bond length is $O_2^+ < O_2 < O_2^- < O_2^{2-}$

546 (b)

The structure of acetylene is

$$H \longrightarrow C = C \longrightarrow H$$

In acetylene, both the C-atoms are sp hybridised. Hence in acetylene molecule, there are one sigma and two pi bonds are present between carbon atoms.

547 (c)

Size of isoelectronics decreases with increasing atomic number.

548 (d)

 $0_{2}^{-}:$

$$\sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2}, \sigma 2p^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi^{*}2p_{y}^{2} \\ \pi^{*}2p_{z}^{2} \end{bmatrix}$$
$$\therefore B.O. = \frac{10-7}{2} = 1.5$$

549 (c)

NO has 15 electrons (paramagnetic) whereas NO⁺ has 14 electrons (diamagnetic).

550 (c)

$$2\text{Fe} + 3[0] \rightarrow \text{Fe}_2\text{O}_3 \text{ (rust)}.$$

551 (d)

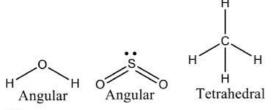
ClO₂ has 33 electron; one will be unpaired.

552 (c)

NO₂ and O₃ both are having irregular geometry.

554 (a

s character \propto bond angle

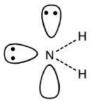

555 (b)

Since the two O atoms in O_2 are connected by a double bond (O = O), therefore,hybridization of O is sp^2

556 **(a)**

Cl - Be - Cl

In $BeCl_2$, Be is sp-hybridised, hence it has linear structure.



557 (c)

On fusion KCN, ionic bonding is disturbed; on boiling H₂S and CF₄ only kinetic energy of molecules increases.

558 (a)

Structure of NH2 is as follows

559 (b)

 $\mathrm{Mn^{2+}}$ is most stable as it has half-filled $d\text{-}\mathrm{orbitals}.$

560 (c)

The structure of
$$PO_4^{3-}$$
 is
$$\begin{bmatrix} 0 \\ 1 \\ 0 - P - 0 \\ 1 \\ 0 \end{bmatrix}^{3-}$$

Here, there units negative charge is shared by four O atoms and five bond pairs are shared between four P-O bonds

∴ Formal charge =
$$\frac{3}{4}$$
 = -0.75
BO of P - 0 bond = $\frac{5}{4}$ = 1.25

561 (c)

The element is P which exists as P₄.

562 (b)

Elements having six electrons in valency shell are electronegative elements, *e.*g., O.

563 (d)

In sulphur, the excitation of *np*-electrons to *nd*-subshell gives rise to increase in number of unpaired electrons.

564 (b)

Spe	Elec	Electrons	Cha	Tot
cies	tro	in other	rge	al
52,000,000	n in	element	100000	480

	cent ral ele me nt		gain ed	
BO3-	5	$3 \times 8 = 24$	+3	32
CO3-	6	$3 \times 8 = 24$	+2	32
NO ₃	7	$3 \times 8 = 24$	+1	32
SO ₃ ² -	16	$3 \times 8 = 24$	+2	42
CN-	6	7	1	14
N ₂	7	7	0	14
C_2^{2-}	6	6	+2	14
PO4-	15	$4 \times 8 = 32$	+3	50
SO ₄ ² -	16	$4 \times 8 = 32$	+2	50
ClO ₄	17	$4 \times 8 = 32$	+1	50

Thus, (b) SO_3^{2-} , CO_3^{2-} , NO_3^{-} are not isoelectronic.

565 (c)

Unpaired electrons are present in KO_2 , while others have paired electrons.

 $NO_2^+ \rightarrow 22$ electrons

 $BaO_2 \rightarrow 72$ electrons

 $AlO_2^- \rightarrow 30$ electrons

 $KO_2 \rightarrow 35$ electrons

566 (d)

 $IP_3 > IP_2 > IP_1$

567 (b)

Coordinate bond is formed.

$$(C_2H_5)_2O \rightarrow BH_3$$

 $(C_2H_5)_2O$ gives one lone pair of electron to BH_3 . So, it is called electron pair donar and BH_3 is called electron pair acceptor.

568 (a)

 BeF_3^- involves sp^2 -hybridization.

570 (c)

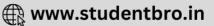
Maximum covalence in most of the atoms (except N, O, F) is given by the number of valency electrons. The paired *s* electrons are also get unpaired during excitation.

571 (b)

Noble gases are in zero group however they possess eight electrons in their valence shell.

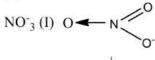
572 (a)

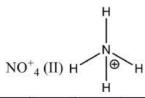
Solid molecules possess stronger van der Waals' forces.


573 (a)

Inert pair effect is not noticed for elements having their outermost shell (n) if n < 4.

574 (b)


- (a) Pauling gave scale of electronegativity.
- (b) Bronsted gave concept of acid and base.
- (c) Mullikan determined charge on electron.
- (d) Lewis gave electronic theory of bonding.
- 575 (b)



Ionization potential increases along the period. Also Be has $1s^2$, $2s^2$, *i. e.*, removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I.P.

576 (b)

$$NO_{2}^{+}(II) \circ = N^{+} = 0$$

	σ- bond	Lone pair	Unpaired electron	Total
I.	3	×	×	$3(sp^2)$
II.	2	×	×	2
III.	4	×	×	(sp)
				$4(sp^3)$

577 **(b)**

Larger cation favours ionic bonding (Fajan's rule).

578 (b)

Only P has d-orbitals.

579 (b)

 H_2O is sp^3 -hybridized; BeF_2 is sp-hybridized.

580 (b

Oxidising power: $F_2 > Cl_2 > Br_2 > I_2$.

581 (a)

 ${
m NH_3}$ molecule in its valence shell has three bond pairs of electrons and one lone pair of electrons. The shape of ${
m NH_3}$ molecule is pyramidal due to the presence of one lone pair electron. It has sp^3 hybridisation.

582 (d)

All carbon to hydrogen bonds are σ-bonds

583 (b)

In C_2H_6 , C is sp^3 hybridised.

In C_2H_4 , C is sp^2 hybridised.

In BeCl2, Be is sp hybridised.

In C2H2, C is sp hybridised

584 (b)

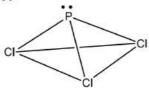
Energy bonds in solids are formed in accordance with Bohr's theory.

585 (c)

The jump in ionisation energy occurs when valence shell changes during removal of electron.

586 (c)

H atom attached on F is responsible for H-bonding..

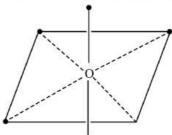

587 (a)

Bond length increases when bond order decrease, hence the correct order of bond length is

$$CO_3^{2-} > CO_2 > CO$$

588 (a)

In ${\rm PCl}_3$ molecule, phosphorus is sp^3 -hybridised but due to presence of lone-pair of electron. It has pyramidal structure.


589 (c)

 $Be_2 = (8 \text{ electrons})$

$$\sigma 1s^2 \sigma 1s^2 \sigma 2s^2 \sigma 2s^2$$

590 (d)

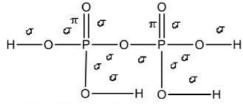
 $sp^3\ d^2$ hybridisation has octahedral structure such that four hybrid orbitals are at 90° w.r.t each other and others two at 90° with first four.

591 **(b)**

 IE_1 of N > IE_1 of O due to half filled nature in N.

592 (b)

Larger anion is easily deformed (Follow Fajans' rule).


593 (c)

Due to resonance structure of C₆H₆.

594 (d)

Draw bond structure and then count bonds.

 \Rightarrow 12 σ , 2d π – p π bonds.

595 (a)

In methane, ethene and ethyne, the hybridisations are respectively sp3, sp2 and sp. Hence, % scharacter will be

$$sp^{3} = \frac{1}{4} \times 100 = 25\%$$

 $sp^{2} = \frac{1}{3} \times 100 = 33\%$
 $sp = \frac{1}{2} \times 100 = 50\%$

597 (c)

Both SO_4^{2-} and BF_4^- have sp^3 -hybridization and are tetrahedral.

598 (c)

If there is four σ – bonds, hybridisation is sp^3 , if three σ – bonds, hybridisation is sp^2 and if two σ – bonds, hybridisation is *sp*.

(a)
$$CH_2 = C = CH_2$$

 $sp^2 sp sp^2$
(b) $CH_3 - CH = CH - CH_2^+$
 $sp^3 sp^2 sp^2 sp^2$
(c) $CH_3 - C \equiv C - CH_2^+$

$$\begin{array}{cccc} sp^3 & sp & sp & sp^2 \\ \text{(d) CH}_3 - \text{CH} = \text{CH} - \text{CH}_2^- \end{array}$$

$$(d) CH3 - CH = CH - CH2-$$

$$sp3 sp2 sp2 sp3$$

(e)
$$CH_2 = CH - CH = CH_2$$

 $sp^2 \quad sp^2 \quad sp^2 \quad sp^2$

Hence, in $CH_3 - C \equiv C - CH_2^+$, all the three types 610 (c) of hybrid carbons are present.

599 (b)

Sigma bond formation involves more overlapping and thus stronger.

600 (b)

Both have sp^2 -hybridization geometry.

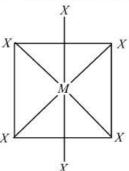
601 (b)

Anions are always larger than their parent atom. Also atomic radius increases down the group, decreases along the period.

602 (c)

AsF₅has sp³d hybridization. In sp^3d hybridization, it is d_{z^2} orbitals which takes part

603 (a)


CCl4 and compounds has zero dipole moment due to their symmetrical

604 (b)

Ionisation energy increases along the period.

605 (a)

In octahedral structure MX_6 , the six hybrid orbitals $(sp^3 d^2)$ are directed towards the corners of a regular octahedral with an angle of 90°. According to following structure of MX_6 the number of X – M - X bonds at 180° must be three.

It is the definition of valency.

607 (a)

Only Na shows +1 oxidation state. Rest all have +1, +2(Hg), +1, +2 (Cu) and +2, +3 (Fe) oxidation states.

608 (a)

The ionisation energy of elements decreases down the group.

609 (d)

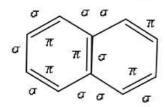
O is more electronegative than C.

Bond energy increases with multiplicity of bonds.

611 (c)

Br₂is a non-polar molecule and hence, its melting point and boiling point depend only upon van der Waals' forces of attraction while all the remaining molecules have dipole moments and hence, their melting points and boiling points depend upon dipole-dipole interactions

612 (c)


H-bonding in H₂O increases forces of attracting among molecules and develops abnormal properties.

In a double bond (=) one σ and one π -bond is present while in a single bond (-) only σ -bond is present.

The structure of the naphthalene is as

In naphthalene five double bonds are present, hence 5π bonds are present in naphthalene.

616 (d)

$$ICl_2^-, I_3^-, N_3^-$$
 are

linear

 ClO_2^- is angular due to sp^3 hybridisation of Cl aton

So, ClO₂ is non-linear.

Bond order = $\frac{1}{2}$ [bonding electrons - antibonding electrons

618 (c)

The difference of electronegativity is more.

619 (c)

Ortho hydroxyl benzaldehyde has maximum volatility due to intra molecular H-bonding.

620 **(b)**

Formal charge = Number of electrons in valence shell -

 $(\frac{1}{2} \times \text{numbers of electrons as bond pair+numbers})$ of electrons as lone pair)

For N₁ and N₃

Formal charge = $5 - \left(\frac{4}{2} + 4\right) = 5 - (6) = -1$

 $N_2 = 5 - \frac{1}{2} \times 8 - 0 = 5 - 4 = +1$ For

In phenol each C atom is sp2 hybridised and O atom is sp^3 hybridised.

622 (a)

Due to sp^3 -hybridization on carbon atoms.

Bond angles of ClF₃, PF₃, NF₃ and BF₃ are (180°, 90°), (101)°, (106°) and (120°) respectively.

624 (c)

Operates in each gaseous molecule.

Resultant of two opposite vectors produces zero dipole moment.

626 (d)

Because of its regular tetrahedral geometry, CCl4 has least dipole moment

627 **(b)**

Coulombic forces are strongest among all.

628 (a)

CO2 has linear structure. It has sp-hybridisation

0 = C = 0

629 (a)

In (A) para-nitro phenol intermolecular (between two molecules) H-bonding exists while in (B) ortho -nitrophenol, intramolecular H-bonding

Because of the presence of intramolecular Hbonding, the boiling point of (B) is lower as compare to (A) and thus, (B) is more volatile i.e., has higher vapour pressure as compare to (A).

630 (b)

Small cation has more polarizing power.

632 (c)

Polar solute are more soluble in polar solvents.

633 (b)

Since, the electronegativity (EN) different is 3.0 -1.2 = 1.8, which is less than 1.9, therefore, bond is expected to be covalent

634 (a)

SiF₄ and SF₄ are not isostructural because SiF₄ is tetrahedral due to sp3 hybridisation of Si while SF4 is not tetrahedral but it is distorted tetrahedral because in it S is sp^3d hybridised and has a lone pair of electron.

635 (c)

SiF₄ has regular tetrahedral geometry.

Cl possesses 10 electrons in ClF₃.

637 (a)

Molec ule	<i>bp</i> + <i>lp</i>	Hybridisa tion	Shape
H ₂ O	2+2	sp^3	Angular
	1900 (1900)		Trigonal
BCl_3	3 + 0	sp^2	Planar
NH_4^+	4 + 0	sp^3	Tetrahedral
CH ₄	4 + 0	sp^3	Tetrahedral

638 (c)

Electronegativity and ionisation energy decreases from F to I.

639 (d)

CH ≡ CH; 3 for triple bonds and two for C—H bond.

640 (b)

The electronic configuration of O_2^{2-} ion is

 0_{2}^{2-} $-\sigma 1s^{2}$, $_{\sigma}^{*}1s^{2}\sigma 2s^{2}$, $_{\sigma}^{*}2s^{2}$, $_{\sigma}2p_{z}^{2}$, $_{\pi}2p_{x}^{2}$, $_{\pi}2p_{y}^{2}$, $_{\pi}^{*}2p_{x}^{2}$

Hence, number of antibonding electron pair in O_2^{2-} molecular ion are four.

641 (c)

Due to the presence of d-subshell electrons.

642 **(b)**

Due to sp^2 -hybridization.

643 (a)

M.O. configuration of O_2 :

$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma * 2s^2, \sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \begin{bmatrix} \pi^* 2p_y^2 \\ \pi^* 2p_z^2 \end{bmatrix}$$

Molecular orbitals $\pi^* 2p_z$ gains electron when O_2^- is formed from O_2

644 (a)

H-bonding is weakest bonding.

646 (b)

Out of sp^3 , sp, sp^2 hybridised carbon, sp hybridised carbon is more electronegative.

647 (c)

Both NH₃ and H₂O have sp^3 -hybridization. CO₂ and BeCl₂ are linear (sp-hybridization).

648 (d)

Unpaired electrons give rise to paramagnetism.

649 (a)

HF has largest dipole moment because electronegativity difference of both is high so, it is highly polar

650 (b)

Due to H-bonding which is more in water than alcohol and not in ether.

652 (c)

 $1s^2$, $2s^22p^4$ leads a sharing of two electron pairs to form molecule, e. g., O_2 .

654 (b)

Count σ and π bonds.

655 (c)

Bond order $C_2^- > NO > O_2^- > He_2^+$ 3 5/2 3/2 1/2

656 **(b)**

Larger is bond order, lesser is bond length.

657 (c)

Strongest H-bonds are formed in between HCOOH and CH₃COOH. This is because H- bonding increases with electronegativity and decreases with size of atom

658 (d)

 BCl_3 has sp^2 -hybridization. Rest all have sp^3 -hybridization having one lone pair of electron and thus, pyramidal in nature.

659 (d)

The overlapping orbitals must possess half-filled nature with anti-spin electron.

661 (c)

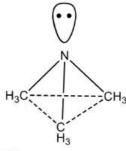
HNO₃ is HO−N=O, assume one covalence

for each coordinate bond.

662 (a)

B.p. of H₂ is minimum.

663 (a)

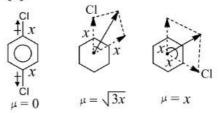

 $\rm H_2O$ has sp^3 -hybridisation and is angular in shape.

664 (b)

Electron gain enthalpy of Cl is maximum.

665 (a)

The structure of trimethyl amine is pyramidal.


666 (b)

Molecules	Interaction
Benzene and	Dispersion force
ethanol	Dipole-dipole
Acetonitrile and	Ion-dipole
acetone	Dispersion
KCl and water	(London) force
Benzene and	3 (5)
carbon	
tetrachloride	

667 **(b)**

Dry ice is CO₂ having C—O covalent bonds.

668 (d)

In p-dichlorobenzene, two C — Cl dipole cancel each other

$$\therefore \mu = 0$$

In, o-dichlorobenzene, two C — Cl dipoles (say x) are inclined at an angle of 60° . Therefore, according to parallelogram law of forces, the resultant

$$= \sqrt{x^2 + x^2 + 2x \times \cos 60^\circ}$$

$$= \sqrt{x^2 + x^2 + 2x^2 \times 1/2}$$
$$= \sqrt{3x^2} = \sqrt{3x}$$

In m-dichlorobenzene, the two dipoles are inclined to each other at an angle of 120°, therefore, resultant

$$= \sqrt{x^2 + x^2 + 2x \times \cos 120^{\circ}}$$

= $x^2 + x^2 + 2x^2 \times (-1/2)$
= $\sqrt{x^2} = x$

Thus ,the decreasing order of dipole moments: o > m > p

669 (d)

One carbon has three bonds and other five where as each should have four bonds.

670 (c)

Cations are smaller in size than their parent atoms.

$$\begin{aligned} &0_2(8+8=16)\\ &=\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2\\ &\approx \pi 2p_y^2, \pi^* 2p_x^1 \approx \pi^* 2p_y^1 \end{aligned}$$

Bond order =
$$\frac{10-6}{2}$$
 = 2

$$O_2^+(8+8-1=15)$$

Bond order= $\frac{10-5}{2}$ = 2.5

$$0_2^-(8+8+1=17),$$

Bond order =
$$\frac{10-7}{2}$$
 = 1.5

$$0_2^{2-}(8+8+2=18),$$

Bond order =
$$\frac{10-8}{2}$$
 = 1

Thus, bond order is maximum for O_2^+

672 (d)

P atom has sp^3 -hybridization with one position occupied by lone pair of electron.

673 **(b)**

A characteristic of resonance.

674 (b)

Covalent compounds have lower m.p. and b.p. than ionic one.

676 (d)

It is a reason for given fact.

677 (b)

 ClO_3^- has sp^3 -hybridization with one lone pair of electron.

678 (d)

Greater the stability of oxide, greater is the case of its formation. Generally ionic oxides are more stable than covalent oxides and among the given 686 (c) metals only Ca form ionic oxide. Hence, Ca has greater tendency to form oxide.

679 (c)

Higher the charge/size ratio, more is the polarising

$$K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$$

680 (d)

He has $1s^2$ configuration.

681 (a)

Water molecules has following structure

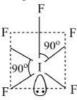
Therefore, there are 4 pairs of electrons (2 lone pairs and 2-bond pairs) in the valence shell of 0atom in water molecule.

682 (a)

Total electrons in valence shell of nitrogen and hydrogen.

$$\begin{array}{c} H \times_{\bullet} \underset{\times}{N_{\bullet}} \times H \\ \times \\ H \end{array}$$

∴ Total electrons in NH₃=5+1+1+1=8


683 (d)

The electronic configuration of carbon is $1s^2, 2s^22p^2$.

684 (c)

Number of hybrid orbitals = no. of bp + no. of lp= 5 + 1 = 6

Thus, hybridization is sp^3d^2 but geometry, due to the presence of one pair, is square pyramidal, ie

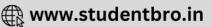
685 (c)

$$= KK^*, \sigma 2s^2, \sigma 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2, \sigma 2p_z^2$$

Bond Order =
$$\frac{1}{2}(N_b - N_a)$$

$$=\frac{1}{2}(8-2)=3$$

(ii)N₂⁺ (13 electrons)


=
$$KK^*$$
, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$, $\sigma 2p_z^1$

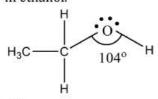
Bond Order =
$$\frac{1}{2}(7-2) = 2.5$$

Since, bond dissociation energy ∝ bond order. Hence, bond dissociation energy of N2 is greater than that of the bond dissociation energy of N₂⁺.

Bond angles in BeCl2, NH3, H2O and SnCl2 are 180°, 107°, 104.5° and 119° respectively. Also

 $\rm H_2S$, $\rm H_2O$, $\rm H_2Se$ has sp^3 -hybridization and bond angles of hydrides decreases down the group.

687 (d)


LiquidHCl does not from H-bonds

688 (a)

 $\rm O_2$ has two unpaired electrons but are paired in $\rm O_2^{2-}$.

689 **(b)**

In ethanol the oxygen of – OH group is bonded to the sp^3 hybridised carbon by a sigma bond. The C – O – H bond angle in ethanol is less than the tetrahedral angle (109°, 28″) due to larger repulsions between the lone pair of repulsions between the lone pairs of oxygen. Hence, it is 104° in ethanol.

690 (c)

(c)
$$CH_3$$
— $C = N$
 sp^3 sp

$$(d) CH_3 - C - NH_2$$

$$sp^3 sp^2$$

Acetonitrile does not contain sp^2 hybridised carbon.

691 (b)

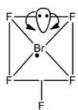
The atomic radii decreases along the period and increases down the gp.

692 (b)

 ${\rm SiO_2}$ possesses giant molecular structure due to tetra valence and catenation nature of Si.

693 (d)

According to VSEPR theory the bond angle decreases with increase in the size of the valence shell of the central atom because electronegativity decreases. *i. e.*, decreasing order of bond angles is


 $NH_3 > PH_3 > AsH_3 > SbH_3$

694 (b)

Half-filled orbitals are more stable.

695 (a)

In BrF₅ number of electrons = 6 (1 lp+5 bp)

So, the structure is supposed to be square pyramidal but will be distorted because of additional *lp-bp* interaction.

Additional *lp-bp* interaction reduced the all bond angle and do not let any angle to be 90°.

696 (b)

Ionisation energy decreases down the group and increases along the period.

697 (a)

Smaller is size of anion, lesser is its polarization, more is ionic nature, more is lattice energy.

698 (c)

Among the given species, the bond dissociation energy of C-0 bond is minimum in case of CO_3^{2-} by which C-0 bond become more weaker in CO_3^{2-} or the bond order of $CO_3^{2-}(1.33)$ is minimum so, the bond become weaker

699 (a)

Peroxide ion in O_2^{2-} $O_2^{2-}(18) = \sigma 1s^2$, ${}_{\sigma}^*1s^2$, ${}_{\sigma}2s^2$, ${}_{\sigma}^*2s^2$, $\sigma 2p_z^2$ $\pi 2p_x^2 = \pi 2p_y^2$, ${}_{\pi}^*2p_x^2 = {}_{\pi}^*2p_y^2$ Bond order $= \frac{N_b - N_a}{2} = \frac{10 - 8}{2} = 1$

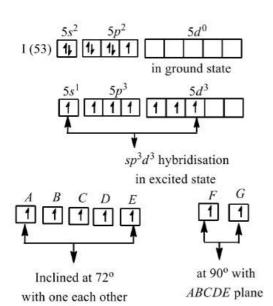
It contains four completely filled antibonding molecular orbitals. Since, all the electrons are paired, O_2^{2-} is diamagnetic.

Peroxide ion is isoelectronic with argon, not with neon.

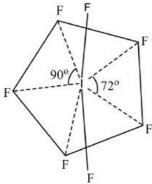
701 (b)

702 (b)

Multiplicity in bonds decreases bond length.


703 (a)

 0_2^{2-} (Total number of electrons =18) $\sigma 1s^2$, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2 {}_{\pi}^* 2p_x^2$ $= {}_{\pi}^* 2p_y^2$


704 (d)

IF₇

seven sp^3d^3 hybrid orbitals forming σ-bonds with F-atoms,

Pentagonal bipyramidal structure

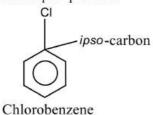
705 (b)

In C_2 , only 2π bonds are present

NH₄ has angle of 109 °28'.

707 (b)

$$\frac{1}{2}\text{Cl}_{2}(g) \to \text{Cl}^{-}(aq)$$


$$\Delta H = \frac{1}{2}\Delta H_{\text{diss}}(\text{Cl}_{2}) + \Delta H_{\text{EA}} \text{Cl} + \Delta H_{\text{hyd}}(\text{Cl}^{-})$$

$$= \frac{240}{2} - 349 - 381$$

$$= -610 \text{ kl mol}^{-1}$$

708 (b)

The position at which substituent is present, is called ipso-position.

The hybridisation of ipso-carbon in chlorobenzene is sp^2 .

709 (c)

Electronegativity difference between N (3,0) and Cl (3.0) is zero and hence, N - Cl bonds are nonpolar. As a result, the overall dipole moment of NCl₃ molecule and its direction is just the dipole moment of the lone pair of electrons

On the other hand, N - Br, (3.0 - 2.8), N - I(3.0 -2.5) and N - H (3.0 - 2.1) are polar and hence, contribute towards the overall dipole moment of the respective moleculas. Since, the EN difference is higher in case of N - H bonds, therefore, NH3 has the higher dipole moment

710 (c)

CHCl3 molecule has largest dipole moment among the given species.

711 (d)

In O2, there are two electrons in antibonding orbitals. Removal of one electron from the O₂molecular gives O₂⁺in which the number of antibonding electrons is one less and hence, BO increases. Thus, removal of the electron from O2stabilized the molecule

712 (a)

Mg²⁺ is a smaller cation in these. Smaller is cation more is hydration energy.

713 (b)

Hydrogen bonding ∝ electronegativity

Larger is anion, more is its polarization.

715 (c)

NaF is more ionic; F is smallest anion among all and thus, least polarized.

716 (a)

$$H \longrightarrow C \longrightarrow C \longrightarrow H$$
 and 2π

Hence, In acetylene, there are 3 σ and 2 π bond.

717 (d)

+4 ionic state is not possible for head with iodide because I- reduces Pb4+ to Pb2+.

The C-C bond length in sp^3 hybridisation is greater than sp^2 hybridisation due to large size of p-orbitals.

In diamond sp3 hybridisation is present while in graphite, naphthalene and fullerene sp2 hybridisation is present therefore the C-C bond length is maximum in diamond.

720 (d)

SiO₂ structure is definite.

721 (a)

Mo lec ule	Structure	Hybr idisa tion of centr al atom	Lone pair
SF ₄	S F	sp^3d	One
CF ₄	F F - C - F F	sp^3	Zero
XeF	F Xe	sp^3d^2	Two

722 (a)

We know that the shape of IF7 (molecule) is pentagonal bipyramidal because central atom I have sp^3d^3 hybridisation.

723 (a)

C - C bond length= 1.54 Å

C = C bond length = 1.34 Å

 $C \equiv C \text{ bond length} = 1.20^{\circ} \text{ Å}$

Thus, correct decreasing order C to C bond lengths

724 (b)

Due to larger difference in electronegativity.

725 (d)

Both O and S belong to same group but H2O is a liquid whileH2S is a gas. This can be explained on the basis of electronegativity. In water due to the high electronegativity of oxygen hydrogen bonds are formed. As a result the molecules of H2O get associate together, hence water exists as a liquid at | 730 (b) room temperature. On the other hand, the

electronegativity of S is less and therefore, hydrogen bonding in H2S is almost negligible. As a result of which molecules of H2S are not associated and H2S exsists as a gas at room temperature.

726 (d)

$$S = C = S$$
.

727 (d)

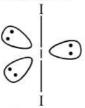
The bond angles in sp^3 , sp^2 and sp-hybridization are 109°, 120° and 180° respectively.

728 (d)

In ClO_3^- , Cl is central atom, it is sp^3 hybrid and on lone pair of electrons one (free pair of electrons) is present.

Pyramidal shape

In XeF_4 , Xe is central atom it is sp^3d^2 hybrid and it two lone pair of electrons are present.


Square planar

In SF₄, S is central atom and sp^3d -hybridised and lone pair is present.

Irregular tetrahedral

In I_3^- , I is central atom and it is sp^3d hybridised and three lone pair electrons are present.

Linear shape

Seven atoms of fluorine are covalently bonded with iodine.

731 (c)

Intermolecular hydrogen bonding is found in $(HF)_n$ due to higher electronegativity of fluorine atoms.

Hydrogen bonding

Hydrogen bonding is helpfull in the association of HF molecule, so HF is found in liquid form.

732 (c)

A species is said to be diamagnetic if it has all electrons paired

Sp eci es	El ect ro ns	MO electronic configurati on	Magnetic behaviour
H_2^-	3	$\sigma 1s^{2} *_{\sigma} 1s^{1}$	Paramagnetic
H ₂ ⁺	1	$\sigma 1s^1$	Paramagnetic
H ₂	2	$\sigma 1s^2$	Diamagnetic
He ₂ ⁺	3	$\sigma 1s^{2} *_{\sigma} 1s^{1}$	Paramagnetic

733 **(b)**

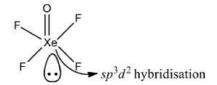
This give rise to polarity in bonds.

734 (c)

First electron affinity is energy releasing process.

735 **(b)**

 ${
m Li}^-:1s^2,2s^2;{
m Be}^-:1s^2,2s^2,2p^1$; in Li, addition of electron has taken place in 2s orbital; in ${
m Be}^-$, addition of electron has taken place in 2p orbital loosing its 2s completely filled configuration. EA_1 for Be is more positive than EA_1 for Li. Thus


736 (d)

Be is least stable.

Bond energy for C—C, N—N, H—H and O—O are : H-H > C-C > N-N > O-O.

737 (b)

The number of lone pair in $XeOF_4$ is one (1). The structure of $XeOF_4$ is given as follows

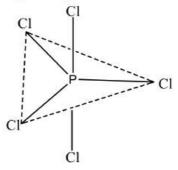
Va stom in 5s	5 <i>p</i>	5 <i>d</i>
Xe atom in ground state	1, 1, 1,	

738 (c)

 BCl_3 has six electrons in outer shell of boron atom.

739 **(b)**

 H_2S contain only covalent bonds, as the electronegativity difference between H and S is only (2.6 - 2.1 = 0.5).



740 (c)

 ${\rm CCl_4}$ has sp^3 -hybridization giving regular tetrahedron geometry. In others the geometry is little distorted inspite of sp^3 -hybridization due to different atoms on the vertices of tetrahedron.

741 **(b)**

P undergoes sp^3d hybridisation in PCl₅ and it has trigonal bipyramidal structure

Trigonal bipyramidal shape of PCl₅

$$PCI_{5} = [Ne] (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1}$$

$$\begin{bmatrix} \sigma & | \sigma & | \sigma & | \sigma & | \sigma \\ CI & CI & CI & CI & CI \end{bmatrix}$$

742 (a)

Electronegativity difference in two atoms involved in bonding is a measure of polarity in molecule.

743 (c)

 \equiv C— has 2σ-and 2π- (thus, sp-hybridization); -CH= has 3σ- and 1π- (thus, sp^2 -hybridization). Remember hybridized orbitals do not form π-bonds.

744 (b)

F has 7 electrons in its valence shell. Thus, to attain stability, it should have lost one electron.

745 (a)

In O_2^{2-} , 8 electrons are present in antibonding orbitals

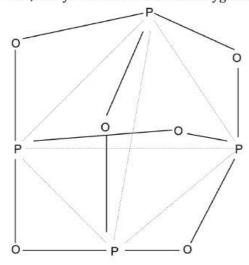
$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_x^2 \left[^{\pi 2p_y^2}_{\pi 2p_z^2}\right], \left[^{\pi^*p_y^2}_{\pi^* 2p_z^2}\right]$$

746 **(a)**

 CH_3^+ possesses sp^2 -hybridization.

747 (a)

No doubt $\mathrm{NH_3}$ and $\mathrm{BF_3}$ have sp^3 (pyramidal) and sp^2 (coplanar) hybridization respectively having one lone pair of electron on N atom which is responsible for pyramidal shape of $\mathrm{NH_3}$ inspite of sp^3 hybridization. However, as soon as it is coordinated to $\mathrm{BF_3}$, both attain tetrahedral geometry and acquire sp^3 -hybridization.

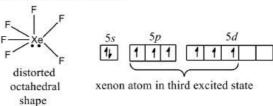

748 (b)

Nitrogen molecule has highest bond energy due to presence of triple bond

749 (b)

P₄O₆ has following structure.

Thus, every P-atom is linked to 3 oxygen atoms.



750 **(d)**

Bond energy ∝ Bond order

751 **(a)**

In XeF₆, the oxidation state of Xe is +6. The shape of XeF₆ should be pentagonal bipyramid due to sp^3d^3 hybridisation but due to the presence of one lone pair at one *trans* position its shape becomes distorted octahedral.

752 (a)

CN⁻ and NO⁺ both have same number of electrons and same bond order (3).

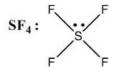
753 **(b)**

Bond length $\propto \frac{1}{\text{bond order}}$

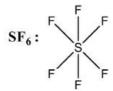
754 (c)

 sp^3 -hybridization leads to tetrahedral geometry.

756 **(b)**


Alkali metals are most electropositive elements.

757 (b)


Anions are always larger than parent atom; cations are always lesser than parent atom.

758 (c)

Total number = $4 \rightarrow sp^3$ hybridisation

Total number = $5 \rightarrow sp^3 d$ hybridisation

Total number = $6 \rightarrow sp^3 d^2$ hybridisation

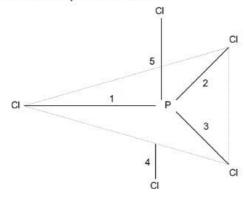
759 (a)

Van der Waals' forces increases in CH_4 to give solid CH_4 .

760 (b)


As the number of lone pairs of electrons increases, bond angle decreases. Thus, the order of bond angle is

 $NH_4^+ > NH_3 > NH_2^-$ (no lp) (1 lp) (2lp)


1 (h)

 $BeCl_2-sp$, BF_3-sp^2 ; NH_3-sp^3 ; XeF_2-sp^3d

762 (a)

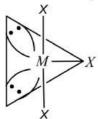
Cl – P – Cl bond angles in PCl₅ molecule are 120° and 90°. PCl_5 , having sp^3d hybridised P atom (trigonal bipyramidal geometry) has two types of bonds; axial and equatorial. The two types of bond 764 (a) have different bond lengths 1, 2, 3 and 4 equatorial bonds and 4, 5 axial bonds.

763 (b)

Both BF₄ and NH₄ have sp³-hybridisation and therefore possess tetrahedral geometry.

$$NF_3 : sp^3 \qquad BCl_3 : sp^2$$

771 (b)


N is sp^2 -hybridized in NO₃.

772 (d)

The ionic radius increases down the group.

773 **(b)**

The formula of MX_3 shows the presence of 3σ 781 (a) bonds. Since, it has T-shape geometry, it must contain 2 lone pairs as

774 (a)

Except NO⁻ (16 electrons), rest all have 14 electrons.

776 (c)

Ethyl alcohol forms stronger H-bonds than ethylamine or ammonia due to greater 783 (a) electronegativity of oxygen than nitrogen atom. Diethyl ether, however, does not form H-bonds since, it does not have a H-atom attached to Oatom.

Carbon in CO₂ has sp-hybridization.

$${
m BF_3} : sp^2 \qquad {
m BrCl_3} : sp^3d \ {
m BF_4^-} : sp^3 \qquad {
m NH_3} : sp^3 \ {
m NH_4^+} : sp^3 \qquad {
m NO_3^-} : sp^2$$

Each possesses 18 electrons.

766 (d)

$$He_2^+(B. O. = 0.5) < O_2^-(B. O. = 1.5)$$

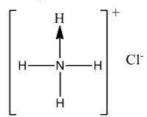
 $< NO(B. O. = 2.5) < C_2^{2-}(B. O. = 3.0)$

768 (d)

In SO₃ molecules, S-atom remains sp² hybrid, hence, it has trigonal planar structure

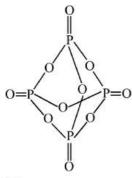
769 (d)

 $BCl_3 = 3\sigma \text{ bonds} + 0lp \text{ of } e^- = 3 \Longrightarrow$ sp²hybridisation $NCl_3 = 3\sigma \text{ bonds} + 1lp \text{ of } e^- = 4 \Longrightarrow$ sp3hybridisation

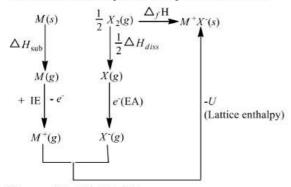

779 (c)

In both CH_4 and CCl_4 , sp^3 hybridisation is present and both have tetrahedral geometry.

As the s-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. s-characters in sp, sp^2 and sp^3 are 1/2, 1/3, 1/4 respectively.


782 (b)

NH4Cl contains ionic, covalent and coordinate linkage.


P4010 is

784 (b)

The Born-Haber cycle takes place as follows

Hence, Z is $M^+ X^-$ (s)

785 (a)

S atom is larger in size than O and F.

786 (d)

$$N_2(7+7=14) = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

$$\approx \pi 2p_y^2, \sigma 2p_z^2$$

Bond order =
$$\frac{10-4}{2}$$
 = 3

$$N_2^+(7+7-1=13)$$

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

 $=\pi 2p_{\nu}^{2}, \sigma 2p_{\pi}^{1}(\text{paramagnetic})$

Bond order =
$$\frac{9-4}{2}$$
 = 2.5

Since, N_2^+ has less bond, then N – Nbond gets weak

$$0_2(8+8=16)$$

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

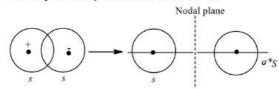
$$\approx \pi 2p_y^2, \pi^* 2p_x^1 \approx \pi^* 2p_y^1$$

Bond order =
$$\frac{10-6}{2}$$
 = 2

$$0_2^+(8+8-1=15)$$

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

 $\approx \pi 2p_{\nu}^2, \pi^* 2p_{\chi}^1$


Bond order =
$$\frac{10-5}{2}$$
 = 2.5

Thus, in the formation of O₂⁺ from

O2, paramagnetism decreases but the bond order increases

787 (a)

In an antibonding molecular orbital, most of the electron density is located away from the space between the nuclei, as a result of which there is a nodal plane (i.e., a plane at which the electron density is zero) between the nuclei.

788 (d)

	Speci es	Hybridisa tion of Xe	Lone pair on Xe	Bondin g pairs
(a)	XeO ₃	sp^3	1	3
(b)	XeF ₄	sp^3d^2	2	4
(c)	XeF ₆	sp^3d^3	1	6
(d)	XeF ₂	$ \begin{array}{c} sp^3d^2 \\ sp^3d^3 \\ sp^3d \end{array} $	3	2
			(Max.)	

789 (b)

Boiling point of HF is highest due to H-bonding. For other halogen acids boiling point increase in the order HCl < HBR < HI. Therefore, most volatile (with Lower b.pt.) is HCl.

790 (b)

The MO electronic configuration of

$$0^{-}_{2}(8+8+1=17)$$

$$= \sigma 1s^2, {}_{\sigma}^* 1s^2, \sigma 2s^2, {}_{\sigma}^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

$$\approx \pi 2p_{y,\pi}^2 2p_{x,\pi}^2 \approx \pi^2 2p_y^1$$

Bond order =
$$\frac{N_{b-N_a}}{2}$$

$$=\frac{10-7}{2}=1.5$$

791 (d)

Multiplicity in bonds decreases bond lengths.

Both NH_4^+ and BF_4^- have sp^3 -hybridization.

793 (a)

NH₃ molecule has three fold axis of symmetry because it has sp^3 hybridisation but due to presence of one lone pair of electron it has pyramidal structure.

794 (b)

Basic character of hydrides decreases down the gp.

795 (b)

NO is paramagnetic in nature

796 (d)


Cation radius increases down the group.

797 (a)

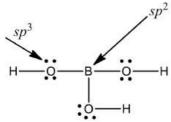
According to Born-lande equation
$$U = \frac{Z^+ \, Z^- e^2 \mathrm{An}}{r_{\mathrm{node}}} \left(\frac{1}{n} - 1 \right)$$

Where, U is lattice energy

 $r_{
m node}$ is interionic distance

 $U \propto \frac{1}{\mathrm{interionic\,disance}}$

: Ions should be of small size to have high lattice energy.


798 (d)

Dipole moment of CH₃OH is maximum in these.

Intermolecular H-bonding gives rise to an increase in b.p.

800 (b)

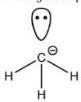
H₃BO₃ has structure

Boron bonds has three thus sp^2 hybridised. Each oxygen has two bonds and two 811 (a)

Species having same hybridisation show similar geometry.

 SO_4^2 : Hybridisation of $S \rightarrow sp^3$ ClO_4^- :Hybridisation of $Cl \rightarrow sp^3$

802 (c)


Anions are larger in size than their parent atom.

803 (c)

Na+ and Cl- are formed.

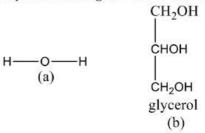
804 (b)

: $-CH_3$ has sp^3 hybridisation.

805 (c)

Glycerol and ethanol both have intermolecular 815 (a) glycerol hydrogen bonding (CH2OH.CHOH.CH2OH) hydrogen bonds per molecule is more than ethanol (C2H5OH). It increases attraction between the molecules and hence, glycerol is more viscous than ethanol.

806 (a)


Larger anion is more polarised.

807 (a)

In $_{\pi 2P_x}^*$ orbital, two nodal planes are present.

808 (d)

Hydrogen bond is formed between molecules of compounds having O, F and N with H.

hydrogen fluoride hydrogen sulphide (c) (d)

: H2S does not have O, F or N.

: It does not form hydrogen bond.

810 (a)

NaF has maximum melting point, melting point decreases with increases in size of halide ion and their bond energy get lower

s-orbitals never go for lateral overlapping because of non-directional nature.

812 (d)

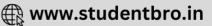
The metallic character is found in iodine as well as in astatine (At). Note that metallic character increases down the group.

813 (b)

Ionization energy increases along the period and decreases down the group. Also (b) has $[Ne]3s^2, 3p^3, i.e.$, half filled configuration, being more stable and thus, have high ionization energy.

814 (a)

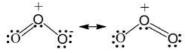
The correct option is O_2^{2-} . This species has 18 electrons, which are filled in such a way that all molecular orbitals are fully filled, so diamagnetic. $\sigma 1s^2 *_{\sigma} 1s^2$, $\sigma 2s^2 *_{\sigma} 2s^2 \sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\pi 2p_x^2 = \pi 2p_y^2$


Water is an universal solvent.

816 (a)

According to Fajan's rule, as the charge on cation increase its size decreases. As a result its tendency to polarise anion increases. This brings more and more covalent character to electrovalent compounds.

- : Among AlCl₃, LaCl₃, MgCl₂ and CsCl size of Al3+ is smallest.
- ∴ Al3+ polarises anion to highest extent.
- ∴ AlCl₃ has maximum covalent character.


817 (a)

C₆H₆ has regular hexagonal geometry.

SF₆ has six S-F bonds.

819 (a)

Resonating structure can be written only for such molecules in which multiple bonds are presents,

820 (d)

According to Born-Haber cycle the enthalpy of formation (ΔH_f) of an ionic compound may be given as

$$\Delta H_f = S + \frac{1}{2}D + I + E + U$$

Where, I = ionisation energy

S = sublimation energy

E = electron affinity

D = dissociation energy

U = lattice energy of compound

Born-Haber cycle is used to determine the lattice 833 (b) energy of the compound. It also may be used to calculate electron affinity of an element.

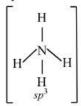
821 (c)

Element C has electronic structure $1s^2$, $2s^2$, $2p^5$, it requires only one electron to complete its octet and it will form anion so it will form electrovalent bond

822 (a)

H atom has 1s¹ configuration. Shielding effect is property of penultimate shell electrons.

823 (b)


 NO_2^+ : The species is linear with sp-hybridisation.

$$O = \stackrel{+}{\underset{sp}{N}} = C$$

 NO_3^- : The species is trigonal planar with sp^2 hybridisation.

$$\bar{O}_{sp^2}N$$

 NH_4^+ : The species is tetrahedral with sp^3 hybridisation.

824 (d)

Both C and N+ have six electrons.

825 (a)

According to Fajans' rule, polarization of anion is influenced by charge of cation, size of cation. More is the charge on cation, more is polarization of anion.

826 (b)

Smaller cation causes more polarization of anion.

827 (a)

Bond order = $\frac{1}{2}$ [no. of bonding electrons-no. of antibonding electron]

Pauling work on chemical bonding.

829 (a)

All have linear structure

$$O = C = O, Cl - Hg - Cl, H - C \equiv C - H$$

830 (d)

A characteristic of metallic bonding.

831 (a)

Due to larger differences in electronegativity.

 SF_4 has sp^3d -hybridization. Rest all have sp^3 hybridization.

834 (a)

NO has 15 electrons.

835 (d)

Ti+ has 21 electrons in it. Rest all have 10 electrons.

836 (a)

O₂ has one unpaired electron.

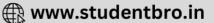
837 (a)

Structure of ammonia is pyramidal (Distorted from tetrahedral to pyramidal due to repulsion between lone pair and bond pair of electrons).

838 (b)

 Cl_2 involves 3p - 3p overlapping.

839 (b)


Only Sulphur has d-orbitals.

 ClO_4^- has sp^3 -hybridization on Cl atom.

841 (d)

Due to dipole moment intermolecular forces of attraction becomes stronger and thus, liquefaction becomes easier.

842 (d)

sp³d-hybridisation leads to trigonal bipyramidal geometry if no lone pair is present, e.g., PCl5; in CIF3 geometry is T-shaped due to the presence of two lone pair of electron. In XeF2, geometry is linear due to the presence of three lone pair of electrons.

843 (a)

Due to the presence of lone pair on N atom.

844 (a)

 B_2 : Total electrons = 10

Configuration: $\sigma 1s^2 {}_{\sigma}^* 1s^2 \sigma 2s^2 {}_{\sigma}^* 2s^2 \pi 2p_x^1 = \pi 2p_y^1$

If Hund's rule is violated, then

 $\sigma 1s^2 {}_{\sigma}^* 1s^2 \sigma 2s^2 {}_{\sigma}^* 2s^2 \pi 2p_x^2 = \pi 2p_y^0$

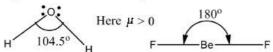
So, diamagnetic

Bond order = $\frac{6-4}{2}$ = 1

845 (a)

Bonding molecular orbitals possess lower energy levels than antibonding orbitals.

846 (a)


Be2+ is smallest and Na+ has largest radius.

847 **(b)**

Hydrogen bond is strongest in HF due to higher electronegativity of F.

848 (d)

The structure of H2O is angular V-shape and has sp^3 - hybridisation and bond angle is 105°. Its 857 **(b)** dipole moment value is positive or more than zero.

But in BeF2, structure is linear due to sphybridisation ($\mu = 0$). Thus, due to $\mu > 0$, H₂O is dipolar and due to $\mu = 0$, BeF₂ is non-polar.

These are factors on which effective nuclear charge depends.

850 (a)

5(on P) + 4(on H) - 1 = 8.

851 (b)

Phosphoric acid has 3 - OH groups, which are involved in hydrogen bonding.

The type of hydrogen bonding, found, is intermolecular. Due to this, it is syrupy.

852 (c)

The bond angles are H₂S SiH₄ BF_3

> 92.6° 107° 109°28'

120°

853 (b)

The metals have low ionization energy. In a piece of metal many free electrons are found which move form one atom to other. The presence of mobile electrons or oscillation of loose electrons are responsible for metallic lusture.

854 (c)

Same spin electrons in two atoms do not take part in bonding.

855 (b)

Molecule	Hybridisation
SO_3	sp ²
C_2H_2	sp
C_2H_4	sp^2
CH ₄	sp^3
CO ₂	sp

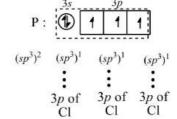
Hence, the hybrid state of S in SO₃ is similar to that of C in C2H4.

856 (d)

 IO_3^- , XeO₃, (sp³ hybridisation) pyramidal

 PF_6^- , SF_6 (sp^3d^2) octahedral

 BH_4^- , NH_4^+ , SiF_4 (sp^3) tetrahedral


 $CO_3^{2-}(sp^2)$ trigonal planar

 NO_3^- (sp²) trigonal planar

 $SF_4(sp^3d)$ see – saw

Hence, SiF4 and SF4 are not isostructural (same structure).

 PCl_3 has sp^3 -hybridisation and possesses one lone pair on P-atom and three bond pair of electron

859 (c)

N atom in NH₃ provides electron pair to H⁺ to form coordinate or dative bond (H₃N → H).

Due to H-bonding, $V_{\text{ice}} > V_{\text{water}}$.

862 (b)

The covalent compounds have low melting point due to weaker forces of attraction among them as compared to strong forces of attraction in ionic compounds.

: HCl is covalent compound among CsF, HCl HF and

(CsF, HF and LiF are ionic compounds)

: HCl has minimum boiling point.

- (i) Hybridisation $=\frac{1}{2}$ (no. of e^- in valence shell of central atom + no. of monovalent atoms + charge on anion - charge on cation)
- (ii) Shape or geometry of molecule depends on lone pair and bond pair of electrons present in it.

Hybridisation of

N in NH₃ =
$$\frac{1}{2}$$
 (5 + 3 + 0 - 0) = 4

 \therefore sp^3 hybridisation.

: It has 3 bond pair and 1 lone pair of electrons, so it has distorted tetrahedron shape.

864 (d)

- 24. The bond angle decreases with decrease in electronegativity. It results in decrease in 873 (d) repulsion between bond pair-bond pair electrons and bond angle becomes smaller.
- Between NH3 and H2O, H2O has smaller 25. bond angle due to presence of two lone pair of electrons causing more repulsion among electrons as compared of NH3 which has only one lone pair of electron.

Hydrides

$$\mathrm{NH^3}$$
 $\mathrm{H_2O}$ $\mathrm{H_2S}$ $\mathrm{H_2Se}$ $\mathrm{H_2Te}$

Bond 107° 105°

H₂ Te has smallest bond angle.

865 (a)

In ionic solids, ions exist at lattice points. In covalent solids atoms lie at lattice points.

866 (c)

In structure (c), all the atoms have complete octet. Thus, it is the correct representation of carbon suboxide

867 (b)

Smaller is atom, more is energy needed to remove electron, i. e., ionisation energy. Also removal of two electrons needs more energy.

Born-Haber cycle inter-relates the various energy terms involved in ionic bonding.

869 (a)

 $BF_3(sp^2)$, $NO_2^-(sp^2)$, $NH_2^-(sp^3)$ and $H_2O(sp^3)$.

sp3 hybridisation Tetrahedron

molecule dsp² hybridisation Square planar

molecule

sp³d hybridisation Trigonal

bipyramidal molecule

 sp^3d^2 or d^2sp^3 Octahedron molecule

hybridisation

871 **(b)**

Total number of unshared electrons = $4 \times 4 = 16$

872 (d)

Ionisation energy order is B < C < 0 < N.

Given,

observed dipole moment = 1.03 D

Bond length of HCl molecule, d = 1.275 Å

 $= 1.275 \times 10^{-8} \text{ cm}$

Charge of electron, $e^- = 4.8 \times 10^{-10}$ esu

Percentage ionic character = ?

Theoretical value of dipole moment = $e \times d$

$$=4.8 \times 10^{-10} \times 1.275 \times$$

 10^{-8} esu.cm

=
$$6.12 \times 10^{-18}$$
 esu.cm
= 6.12 D

Percentage ionic character

 $\frac{\text{observed dipole moment}}{\text{theoretical value of dipole moment}} \times 100$

$$=\frac{1.03}{6.12}\times 100 = 16.83\%$$

874 (b)

Double bond involves the sharing of two electron pairs or four electrons.

875 (b)

There are 16 P - 0 bonds in P_4O_{10} .

876 (a)

Difference of electronegativity > 1.7 produces ionic compound.

877 (a)

It is a concept.

878 (a)

Low ionisation potential indicates that element can easily lose electron to form cation.

879 (d)

Ionic compounds having lattice energy higher than hydration energy are insoluble in water.

880 (a)

Removal of electron is easier in *f*-block elements due to more shielding.

881 (d)

Metals and non-metals combine to complete their octet. Since, non-metals have lack of electrons, in order to complete their octet, they gain electrons, consequently, the size of non-metal atom will increase.

 $Metal + Non - metal \rightarrow Electrovalent bond$ (Na⁺) (CI)

882 (d)

These are characteristics of hydration.

Molecules or ion having no unpaired electrons are 896 (c) diamagnetic, e.g.,

$$\text{Li}_2 = 6e^- = \sigma 1s^2, \, ^*_{\sigma} 1s^2, \, \sigma 2s^2$$

884 (a)

Given electronic configuration of anion X is $\sigma 1s^2$, ${}_{\sigma}^*1s^2$, $\sigma 2s^2$, ${}_{\sigma}^*2s^2$, $\pi 2p_r^2$ $=\pi 2p_{y}^{2}$, $\sigma 2p_{z}^{2}$, $\pi 2p_{x}^{1}$

 \therefore Total number of electrons of anion X = 15Hence, the anion X is N_2^- .

885 (a)

Small cation causes more polarization in anion. Also larger anions are easily polarized by a cation. More is polarization of anion, more is covalent character.

886 (c)

Hydrogen bonding is responsible for their solubility.

887 (a)

Ne has van der Waals radius larger than covalent radius of fluorine.

888 (c)

As the number of unpaired electrons (lone pair of electrons) increases, bond angle decreases. Thus, the decreasing order of bond angle is

 $NO_2^+ > NO_2 > NO_2^-$ Species: Bond angle: 180° 135° 115°

889 (a)

Dipole moment of $CH_4 = 0$.

890 (b)

Each has 22 electrons.

CS2 is linear having zero dipole moment.

892 (a)

Atomic radius decreases along the period, increases down the group.

894 (b)

In NH3, the N atom contains a one lone pair of electrons and three bond pairs in its valence shell. So, it shows sp^3 hybridisation. Due to presence of one lone pair of electron, its shape deviates from tetrahedral because lone pair shows more repulsion than bond pairs.

$$lp - lp > lp - bp > bp - bp$$

So, its shape is pyramidal and angle 107°.

The K_{sp} value of CuS is less than ZnS and thus, ZnS is more soluble. Also sodium salts are highly soluble in water.

Both carbon atoms have 2σ -and 2π -bonds.

 $1 \text{debye} = 10^{-18} \text{esu.}$

898 (c)

Low ionisation energy indicates that electron can be easily lost and cation formation is easier.

899 (b)

The paramagnetic species has unpaired electron in

(a)
$$H_2 = 1 + 1 = \sigma 1s^2$$

(b)
$$N_2 = 7 + 7 = 14 =$$

$$\sigma 1s^2$$
, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$

$$(c)CO = 6 + 8 = 14 =$$

$$\sigma 1s^2$$
, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$

$$(d)0_2 = 8 + 8 = 16 =$$

$$\sigma 1s^2$$
, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_z^2 =$

$$\pi 2p_y^2$$
, $({}_{\pi}^* 2p_x^1 = {}_{\pi}^* 2p_y^1)$

: 02 molecule has unpaired electrons.

 \therefore O_2 molecule is paramagnetic.

901 (c)

C2, N2 and F2 has no unpaired electron in their molecular orbital configuration.

IP of inert gases is maximum.

Cu loses two electron to form Cu²⁺.

905 (a)

$$0^{+}_{2}(15e^{-})$$

$$= KK^* (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (\sigma 2p_x)^2, (\pi 2p_y)^2$$

$$= (\pi 2 p_z)^2 \big({}^*_\pi 2 p_y \big)^1 = ({}^*_\pi 2 p_z)^0$$

Hence, bond order =
$$\frac{1}{2}(10 - 5) = 2.5$$

$$N_2^+ (13 e^-) = KK^* (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (\pi 2p_y)^2$$

= $(\pi 2p_z)^2$, $(\sigma 2p_x)^1$
Hence, Bond order = $\frac{1}{2}(9-4) = 2.5$

906 (b)

In XeF_5^+ , Xe atom has only seven electrons, *i.e.*, $5s^2 5p^5$. Here two 5p electrons are promoted to 5d-sublevel. Then 5s, three 5p and two 5d orbitals hybridize to give six sp^3d^2 hybrid orbitals in an octahedral geometry. Out of these five orbitals are singly occupied which form sigma bonds with five F atoms. The sixth hybrid orbital is occupied by a lone pair in trans position giving a square pyramid structure.

907 (d)

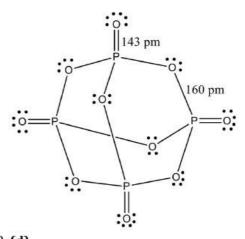
HOMO, means highest occupied molecular orbital and in CO (14 electron ion), σ bonding molecular orbital in HOMO

CO =
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2$
= $\pi 2p_y^2$, $\sigma 2p_z^2$

909 (c)

Sulphur is sp^2 hybridised in SO₂. $S = 1s^2, 2s^22p^6, 3s^23p^43d^0$

Due to sp^2 -hybridisation and presence of one lone pair of electrons SO_2 has angular geometry.


Among N_2O , CO_2 and CO, all have sp hybridisation.

910 (c)

Coordinate bonding involves sharing of an electron pair provided by a donor to acceptor atom.

911 (a)

In the structure of P_4O_{10} , each phosphorus atom is covalently linked with three oxygen atoms and each oxygen atom is bonded to two phosphorus atoms. Each phosphorus atom is also linked with an additional oxygen atom with the help of a coordinate linkage by lone pair of electron present on P atom.

 $H_2C = C = CH_2 \text{ or}$

It has 2 double and 4 single bonds

913 (b)

CsCl is ionic.

914 (c)

In NaOH, Na⁺ and OH⁻ ions are bonded together by ionic bond while in OH⁻ ion oxygen and hydrogen atoms are bonded together by covalent bond Na⁺ $[O-H]^-$.

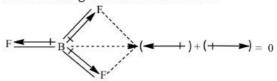
915 (d)

Effective nuclear charge increases in this order.

917 (d)

AgBr has higher lattice energy.

918 (c)


$$r_H = \frac{74}{2} = 37 \text{pm}, \ r_{Cl} = \frac{198}{2} = 99 \text{pm}.$$

B.L. of HCl $\approx r_H + r_{Cl}$

919 (b)

A symmetrical molecule have zero dipole moment. The dipole moment of BF₃ molecule is zero due to its symmetrical (triangular planar) structure.

The three fluoride atoms lie at the corners of an equilateral triangle with boron at the centre. Thus, the vectorial addition of the dipole moments of the three bonds gives a net sum of zero.

920 (c)

Hence, for a stable molecule the value of bond order must be positive. When bond order is zero the molecule will not exist.

921 (b)

Follow Fajans' rule.

922 (b)

It is a fact.

923 (a)

In PCl_3 and $POCl_3$, P atom is sp^3 -hybridized.

924 (c)

Square planar geometry has dsp^2 -hybridisation.

925 (c)

Both BrO_3^- and XeO_3 have sp^3 -hybridisation and one lone pair of electron.

HF and CH₃OH shows intermolecular hydrogen 938 (c) bonding.

927 (d)

During hydration of ions in aqueous solution, there exists an attractive force between ions and water molecules, which are polar in nature and acts as dipole. So, hydrogen of ions in aqueous solution is an example ion-dipole interaction.

928 (c)

According to Fajan's rule, largest cation and smallest ions form ionic bond

929 (d)

Phosphorus atom is sp^3 hybridised in P_4 usually. 940 (d) Therefore, p-character 75%

930 (c)

Na⁺ is cation; Cl⁻, PO₄³⁻ are anion.

Ionisation energy decreases down the group.

The characteristics to be observed during removal of II electron.

933 (c)

$$\begin{split} 1.(\mathrm{N}_2 &\to (\sigma 1s)^2 \ (_\sigma^* 1s)^2 \ (\sigma 2s)^2 (_\sigma^* 2s)^2 \\ &\quad (\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^2 \\ \mathrm{N}_2^+ &\to (\sigma 1s)^2 \ (_\sigma^* 1s)^2 \ (\sigma 2s)^2 (_\sigma^* 2s)^2 \\ &\quad (\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^1 \\ \\ 1.O_2 &\to (\sigma 1s)^2 \ (_\sigma^* 1s)^2 \ (\sigma 2s)^2 (_\sigma^* 2s)^2 \ (\sigma 2p_z)^2 \\ &\quad (\sigma 2p_x)^2 (\sigma 2p_y)^2 \ (_\sigma^* \ 2p_x)^1 \ (_\sigma^* \ 2p_y)^1 \end{split}$$

 $0_2^+ \rightarrow (\sigma 1s)^2 ({}_{\sigma}^* 1s)^2 (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (2p_z)^2$

$$(\pi 2p_x)^2 (\pi 2p_y)^2 ({}_{\pi}^* 2p_x)^1$$

Since, $\pi 2p_x$ and $\pi 2p_y$ are nearly same in energy,

the electrons can be removed from $(\pi 2p_y \text{ or } \pi 2p_x)$

and $\binom{*}{\pi 2p_y}$ or $\binom{*}{\pi 2p_x}$ respectively.

934 (b)

Both possess $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

936 (d)

The resultant dipole in regular tetrahedron is zero.

937 (c)

Smaller the size of cation, more is ionic character, more is attraction among ions.

Given ionic charge = 4.8×10^{-10} e.s.u. and ionic distance = $1\text{Å} = 10^{-8}$ cm. We know that dipole $moment = Ionic charge \times ionic distance$

 $= (4.8 \times 10^{-10}) \times 10^{-8}$

 $= 4.8 \times 10^{-18}$ e. s. u. per cm

= 4.8 debye.

939 (d)

As the s-character increases in hybridised orbitals, its electronegativity increases.

> sp^2 sp^3 sp

s-character 50%

33.3% 25%

PCl₃ and AsCl₃ have sp³ hybridisation and PF₅ has sp^3d hybridisation. Hence, in group of PCl₃, AsCl₃ and PF_5 all do not have sp^3d hybridisation.

942 (d)

Each has 18 electrons.

943 (b)

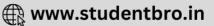
Alkali metals are always univalent.

944 (c)

 XeF_4 has sp^3d^2 -hybridized Xe atom having two lone pair of electrons and thus, octahedral geometry changes to square planar due to lone pair effect.

945 (d)

 $PCl_5 = sp^3d$ (Trigonal pyramidal)


 $IF_7 = sp^3d^3$ (Pentagonal bipyramidal)

 $H_3O^+ = sp^3$ (Pyramidal)

 $ClO_2 = sp^2$ (Angular) bond length are shorter than single bond due to resonance.

 $NH_4^+ = sp^3$ (Tetrahedral)

946 (d)

B in BF₃ has sp^2 -hybridization.

In metallic bonds, the valence shell electrons are 954 (b) delocalised and shared between many atoms. These delocalised electrons allow the metal atoms to slide past one another without being subjected 955 (b) strong repulsive forces. The malleability and ductility of metals is due to this sliding capacity of the delocalised electrons.

948 (b)

949 (a)

A reason for given fact.

950 (c)

Benzene nitrile contains 13σ and 5π bonds.

951 (d)

During melting of SiO₂, the gient network structure held by covalent bonds breaks to give individual molecules ofSiO2. In contrast, during boiling of H2O only change of state occurs from liquid to gaseous; during melting of KCN, electrostatic attraction between K+ and CN- ions is overcome; during boiling of CF4, van der Waals' forces of attraction breaks

952 (b)

Ethyl alcohol C2H5OH is soluble in water due to Hbonding.

$$\delta$$
-
 δ -
 δ +

 O :

 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

953 (b)

Only p-orbitals give rise to σ-bond (head on overlapping) and π -bond (lateral overlapping).

HCl and AlCl₃ are covalent but give ions in solution.

As a result of more overlapping. Note that π bonds are formed after σ -has already formed.

956 (b)

(a)
$$NH_3 + H^+ \rightarrow NH_4^+$$

 $(3bp + 1lp)$ $(4bp \Rightarrow sp^3 \text{ hybridisation})$
 $\Rightarrow sp^3 \text{ hybridisation})$

(b)
$$BF_3 + F^- \rightarrow BF_4^-$$

(3 $bp + sp^2$ hybridisation)

$$(4bp \Rightarrow sp^3 \text{ hybridisation})$$

(c)
$$H_2O + H^+ \rightarrow H_3O^+$$

 $(2bp + 2lp)$ $(3bp + 1lp)$

$$\Rightarrow sp^3$$
 hybridisation) $\Rightarrow sp^3$ hybridisation)

(d)
$$CH \equiv CH + 2H_2 \rightarrow CH_3 - CH_3$$

 $sp \quad sp \quad sp^3 \quad sp^3$

Hence, reaction given in option (b) involves the change of hybridisation from sp^2 to sp^3 .

957 (c)

Lattice energy of BaSO₄ is appreciable high and predominates over hydration energy.

958 (a)

Xe in XeOF₄ has sp^3d^2 -hybridization having one lone pair on Xe atom.

960 (c)

Due to back bonding in BF₃.

961 (c)

$$\begin{array}{ccc} & N \equiv C - C - C \equiv N \\ C_2(CN)_4 \text{ is} & & \parallel \\ & N \equiv C - C - C \equiv N \end{array}$$

C = C is sp^3 -hybridization and $C \equiv N$ is sphybridized.

962 (c)

Electron affinity order for halogens is Cl > F > Br > I.

963 (c)

Potash alum is a double salt.

Potash alum, K2SO4. Alx(SO4)3. 24H2O (given)

Ions +3

Therefore, Al₃(SO₄)₃ is compound of Al³⁺ and SO_4^{2-} .

On comparing, x=2

Hence, formula of potash alum is

$$= K_2SO_4. Al_2(SO_4)_3. 24H_2O$$

964 (d)

For KO_2, O_2^- has unpaired electron so, it is 974 (a) paramagnetic.

$$\begin{array}{l} 0_{2}^{-}(17) \\ \sigma 1s^{2}, \, _{\sigma}^{*}1s^{2}, \sigma 2s^{2}, \, _{\sigma}^{*}2s^{2}, \sigma 2p_{x}^{2}, (\sigma 2p_{y}^{2}=\sigma 2p_{z}^{2}), \\ _{\pi}^{*}2p_{y}^{2}= _{\pi}^{*}2p_{z}^{1} \end{array}$$

965 (c)

HCl exists as $H^{\delta+}$ — $Cl^{\delta-}$ due to difference in electronegativity of H and Cl.

966 (b)

Outer shell electrons are referred as valence

967 (d)

Species	Bond order
O_2^+	2.5
O_2	2.0
0_{2}^{-}	1.5
Hence, the ord	er of stability is

 $0_2^+ > 0_2 > 0_2^-$

968 (c)

Diamond is hard, graphite is soft.

969 (a)

IF₅ is square pyramid (sp^3d^2 -hybridisation in I); PCl_5 is trigonal bipyramid (sp^3d -hybridisation in P).

970 (d)

Characteristics of bond order concept.

971 (c)

M.0. configuration of
$$O_2$$
 is $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^2$, $\pi 2p_x^2$, $\pi 2p_y^2$, $\pi^* 2p_x^1$,

972 (b)

Bond energy of Cl2 is highest among all halogen molecules. B.E. of F2, Cl2, Br2, I2 are 37, 58, 46 and 36 kcal mol⁻¹ respectively.

Bond length
$$\propto \frac{1}{\text{Bond order}}$$

NO⁻ = 16e⁻
= $\sigma 1s^2$, ${}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\sigma 2p_x^2$, $\pi 2p_y^2$
= $\pi 2p_z^2$, ${}_{\pi}^* 2p_y^1$ = ${}_{\pi}^* 2p_z^1$
BO = $\frac{N_b - N_a}{2}$
= $\frac{10 - 6}{2}$ = 2

Similarly BO of NO+ will be calculated as

NO⁺ =
$$14e^{-}$$

BO = $\frac{10-4}{2}$ = 3
CN⁻ = $14e^{-}$, BO = 3
CN⁺ = $13e^{-}$, BO = $\frac{9-4}{2}$ = 2.5

Bond order is least for NO-. So, its bond length is highest.

975 (c)

$$CsBr_3 \rightarrow Cs^+ + Br_3^-$$

976 (c)

Number of σ bonds in 1-butene are 11.

977 (b)

NO₃ has sp²-hybridization and possesses coplanar or equilateral triangular geometry.

978 (b)

CCl4 involves two non-metals C and Cl and thus, bonding is covalent. CaH2 is an ionic compound as it involves alkaline earth metal.

979 (c)

CaO is basic oxide.

